

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Linear Algebra and its Applications

www.elsevier.com/locate/laa

An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank \hat{X}

LINEAR ALGEBRA and Its ana no
Annlications

Fernando De Terán^{a,∗}, Froilán M. Dopico^a, J.M. Landsberg ^b

^a *Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, ²⁸⁹¹¹ Leganés, Spain* ^b *Department of Mathematics, Texas A& ^M University, Mailstop ³³⁶⁸ Col lege Station, TX 77843-3368, United States*

A R T I C L E I N F O A B S T R A C T

Article history: Received 8 June 2016 Accepted 16 January 2017 Available online 19 January 2017 Submitted by V. Mehrmann

MSC: 15A21 15A22

Keywords: Matrix pencil Normal rank Algebraic set Irreducible components Orbits Kronecker canonical form

The set of $m \times n$ singular matrix pencils with normal rank at most r is an algebraic set with $r + 1$ irreducible components. These components are the closure of the orbits (under strict equivalence) of $r + 1$ matrix pencils which are in Kronecker canonical form. In this paper, we provide a new explicit description of each of these irreducible components which is a parametrization of each component. Therefore one can explicitly construct any pencil in each of these components. The new description of each of these irreducible components consists of the sum of *r* rank-1 matrix pencils, namely, a column polynomial vector of degree at most 1 times a row polynomial vector of degree at most 1, where we impose one of these two vectors to have degree zero. The number

* Corresponding author.

E-mail addresses: fteran@math.uc3m.es (F. De Terán), dopico@math.uc3m.es (F.M. Dopico), jml@math.tamu.edu (J.M. Landsberg).

<http://dx.doi.org/10.1016/j.laa.2017.01.021> 0024-3795/© 2017 Elsevier Inc. All rights reserved.

[✩] This work was partially supported by the Ministerio de Economía y Competitividad of Spain through grants MTM-2012-32542, MTM2015-68805-REDT, and MTM2015-65798-P (F. De Terán, F.M. Dopico), and NSF grant DMS-1405348 (J.M. Landsberg).

of row vectors with zero degree determines each irreducible component.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We are concerned in this paper with *singular* matrix pencils $A + \lambda B$, with $A, B \in$ $\mathbb{C}^{m \times n}$. This includes rectangular pencils $(m \neq n)$ and square ones $(m = n)$ with det $(A +$ $λB$) identically zero as a polynomial in $λ$. More precisely, our interest focuses on the set $\mathcal{P}_r^{m \times n}$ of $m \times n$ matrix pencils with complex coefficients and normal rank at most *r*, with $r < \min\{m, n\}$.

In the contexts where matrix pencils usually arise, e.g., systems of first order ordinary differential equations with constant coefficients $Ax+Bx' = f(t)$, the relevant information is encoded in the *Kronecker canonical form* of the pencil (in the following, KCF, or $KCF(A + \lambda B)$ when it refers to a particular pencil). This is the canonical form under strict equivalence of matrix pencils (see Section [2\)](#page--1-0). The computation of the KCF of a given pencil $A + \lambda B$ is a delicate task, because it is not a continuous function of the entries of *A* and *B* (see, e.g., [\[2\]\)](#page--1-0). Nonetheless, when a good algorithm (for instance, the backward stable one in $[19]$ is used to compute the KCF, the output is the KCF of a pencil $A + \lambda B$, "nearby" to the exact one, more precisely, a KCF that contains the exact KCF in its orbit closure, as explained in the next paragraph. In this setting, the analysis of the geometry of the set of $m \times n$ matrix pencils may be useful [\[10,11\].](#page--1-0) In particular, the knowledge of all KCFs of the pencils included in the orbit closure of a given KCF could improve our understanding of possible failures of the algorithms, and to develop enhanced versions of these algorithms.

Two $m \times n$ matrix pencils $Q_1(\lambda)$ and $Q_2(\lambda)$ are said to be *strictly equivalent* if there exist two constant nonsingular matrices $E \in \mathbb{C}^{m \times m}$ and $F \in \mathbb{C}^{n \times n}$ such that $EQ_1(\lambda)F =$ $Q_2(\lambda)$. We identify each orbit under strict equivalence with the KCF of any pencil in this orbit (by definition, they all have the same KCF). Then we say that some KCF, $K_1 + \lambda K_2$, degenerates to the KCF $K_1 + \lambda K_2$ if $K_1 + \lambda K_2$ belongs to the closure of the orbit of $K_1 + \lambda K_2$. In other words, if there is a sequence of matrix pencils, $A_m + \lambda B_m$, all having the same KCF, namely $K_1 + \lambda K_2$, which converges to a pencil whose KCF is $K_1 + \lambda K_2$. There are some cases where it is easy to determine, even at a first glance, whether a given KCF degenerates to some other one or not. This happens, for instance, with the following two pencils in KCF:

$$
K(\lambda) = \begin{pmatrix} \lambda & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \widetilde{K}(\lambda) = \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix}.
$$

It holds that $K(\lambda)$ degenerates to $\widetilde{K}(\lambda)$, since the sequence $\{K^{(m)}(\lambda)\}_{m\in\mathbb{N}}$, with

Download English Version:

<https://daneshyari.com/en/article/5773109>

Download Persian Version:

<https://daneshyari.com/article/5773109>

[Daneshyari.com](https://daneshyari.com)