

Note on the free sets and free subsemimodules in semimodules $\stackrel{\text{\tiny{$\varpi$}}}{=}$

Qian-yu Shu, Xue-ping Wang*

College of Mathematics and Software Science, Sichuan Normal University, Chengdu, Sichuan 610066, People's Republic of China

ARTICLE INFO

Article history: Received 26 October 2016 Accepted 12 January 2017 Available online 17 January 2017 Submitted by R. Brualdi

MSC: 15A03 16Y60

Keywords: Semiring Semimodule Free set Free basis

ABSTRACT

Some conditions that a finite set in an \mathcal{L} -semimodule is free are established. This gives an answer to an open problem raised by Tan (2016) in his work [7].

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The study of semimodules over semirings has a long history. In 1966, Yusuf [9] introduced the concept of an inverse semimodule over a semiring and obtained some analogues to theorems in module theory for inverse semimodules (note that an inverse semimodule M is a semimodule in which the monoid (M, +) is an inverse semigroup). Since then,

* Corresponding author. Fax: +86 28 84761393.

^{*} Supported by National Natural Science Foundation of China (No. 11401410).

E-mail addresses: 34956229@qq.com (Q.-y. Shu), xpwang1@hotmail.com (X.-p. Wang).

a number of works on semimodule theory were published (see e.g. [1-3,7]). We know that a semimodule structure is the one which arises naturally in the properties of sets of vectors with entries in a semiring. Thus, they turn out to be analogues for algebraic structure on semirings to the concept of a module for rings. However, we must be careful since not all properties are transferred in a straightforward way. For example, in general, a system of linearly independent vectors cannot be extended to a basis of a semimodule (see [2], Theorem 4). Some of facts known about free sets in modules have not yet been proved in semimodule, one of them is for a given finitely generated free semimodule over a commutative semiring, find a necessary and sufficient condition for a nonempty finite subset in this semimodule to be free (see [7], Open problem 3.1).

In this note, we give conditions under which a nonempty finite subset in a free semimodule is free. So that we give an answer to Open problem 3.1 in [7].

2. Definition and previous results

In this section, we collect only some necessary notions for the presentations of the main result in the next section.

Definition 2.1 (Golan [3]). A semiring $\mathcal{L} = \langle L, +, \cdot, 0, 1 \rangle$ is an algebraic structure with the following properties:

- (i) (L, +, 0) is a commutative monoid,
- (ii) $(L, \cdot, 1)$ is a monoid,
- (iii) $r \cdot (s+t) = r \cdot s + r \cdot t$ and $(s+t) \cdot r = s \cdot r + t \cdot r$ hold for all $r, s, t \in L$,
- (iv) $0 \cdot r = r \cdot 0 = 0$ holds for all $r \in L$,
- (v) $0 \neq 1$.

A semiring \mathcal{L} is commutative if $r \cdot r' = r' \cdot r$ for all $r, r' \in L$.

Definition 2.2 (Golan [3]). Let $\mathcal{L} = \langle L, +, \cdot, 0, 1 \rangle$ be a semiring. A left \mathcal{L} -semimodule is a commutative monoid $(\mathcal{M}, +)$ with additive identity **0** for which we have a function $L \times \mathcal{M} \to \mathcal{M}$, denoted by $(\lambda, \mathbf{a}) \mapsto \lambda \mathbf{a}$ and called a scalar multiplication, which satisfies the following conditions for all λ, μ in L and \mathbf{a}, \mathbf{b} in \mathcal{M} :

(i) $(\lambda \mu)\mathbf{a} = \lambda(\mu \mathbf{a}),$ (ii) $\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b},$ (iii) $(\lambda + \mu)\mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a},$ (iv) $1\mathbf{a} = \mathbf{a},$ (v) $\lambda \mathbf{0} = \mathbf{0} = 0\mathbf{a}.$

The definition of a right \mathcal{L} -semimodule is analogous. In this paper, \mathcal{L} -semimodules will always mean left \mathcal{L} -semimodules. \mathcal{L} -semimodules were studies in [2,5] under the name \mathcal{L} -semilinear spaces.

Download English Version:

https://daneshyari.com/en/article/5773111

Download Persian Version:

https://daneshyari.com/article/5773111

Daneshyari.com