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In this paper, we present an efficient ΓQR algorithm for solv-
ing the linear response eigenvalue problem H x = λx, where 
H is Π−-symmetric with respect to Γ0 = diag(In, −In). 
Based on newly introduced Γ -orthogonal transformations, the 
ΓQR algorithm preserves the Π−-symmetric structure of H
throughout the whole process, and thus guarantees the com-
puted eigenvalues to appear pairwise (λ, −λ) as they should. 
With the help of a newly established implicit Γ -orthogonality 
theorem, we incorporate the implicit multi-shift technique to 
accelerate the convergence of the ΓQR algorithm. Numerical 
experiments are given to show the effectiveness of the algo-
rithm.
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1. Introduction

In this paper, we consider the standard eigenvalue problem of the form

H x ≡
[

A B
−B −A

] [
x1
x2

]
= λx, (1.1)

where A and B are n ×n real symmetric matrices. We refer to it a linear response eigen-
value problem (LREP). Any complex scalar λ and nonzero 2n-dimensional column vector 
x that satisfy (1.1) are called an eigenvalue and its associated eigenvector, respectively, 
and correspondingly, (λ, x) is called an eigenpair.

Our consideration of this problem is motivated by Casida’s eigenvalue equations 
in [1–4]. In computational quantum chemistry and physics, the excitation states and 
response properties of molecules and clusters are predicted by the linear-response time-
dependent density functional theory. The excitation energies and transition vectors 
(oscillator strengths) of molecular systems can be calculated by solving Casida’s eigen-
value equations [1–3]. There has been a great deal of recent work on and interest in 
developing efficient numerical algorithms and simulation techniques for computing exci-
tation responses of molecules and for material designs in energy science [5–12].

Let

Γ0 =
[
In 0
0 −In

]
, Π ≡ Π2n =

[
0 In
In 0

]
. (1.2)

The matrix H in (1.1) satisfies

Γ0H =
[
A B
B A

]
and H Π = −ΠH . (1.3)

As a result of the second equation in (1.3), if (λ,x) is an eigenpair of H , i.e., H x = λx, 
then (−λ,Πx) is also an eigenpair of H , and if also λ /∈ R, then 

(
λ̄, x̄

)
and 

(
−λ̄,Πx̄

)
are eigenpairs of H as well, where λ̄ is the complex conjugate of λ and x̄ takes entrywise 
complex conjugation.

Previously in [5,6,13], LREP (1.1) was well-studied under the condition that Γ0H is 
positive definite. For the case, all eigenvalues of H are real. Without the positive definite 
condition, the methods developed in [5,6,13] are not applicable.

Let Jn be the set of all n × n diagonal matrices with ±1 on the diagonal and set

Γ 2n = {diag(J,−J) : J ∈ Jn}.

Note that Γ0 = diag(In, −In) ∈ Γ 2n. In this paper, we will study an eigenvalue problem 
for which the condition that Γ0H is positive definite is no longer assumed and it in 
fact includes LREP (1.1) as a special case. Specifically, we will consider the following 
eigenvalue problem
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