

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

A symmetric structure-preserving ΓQR algorithm for linear response eigenvalue problems

LINEAR Algebra

Applications

Tiexiang Li^{a,1}, Ren-Cang Li^{b,*,2}, Wen-Wei Lin^{c,3}

^a School of Mathematics, Southeast University, Nanjing, 211189, People's Republic of China

^b Department of Mathematics, University of Texas at Arlington, P.O. Box 19408, Arlington, TX 76019, United States

 $^{\rm c}$ Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

A R T I C L E I N F O

Article history: Received 4 January 2016 Accepted 2 January 2017 Available online 10 January 2017 Submitted by H. Fassbender

MSC: 15A18 15A23 65F15

Keywords: Π^{\pm} -matrix Γ -orthogonality Structure preserving ΓQR algorithm Linear response eigenvalue problem

ABSTRACT

In this paper, we present an efficient ΓQR algorithm for solving the linear response eigenvalue problem $\mathscr{H} \boldsymbol{x} = \lambda \boldsymbol{x}$, where \mathscr{H} is $\boldsymbol{\Pi}^-$ -symmetric with respect to $\Gamma_0 = \operatorname{diag}(I_n, -I_n)$. Based on newly introduced Γ -orthogonal transformations, the ΓQR algorithm preserves the $\boldsymbol{\Pi}^-$ -symmetric structure of \mathscr{H} throughout the whole process, and thus guarantees the computed eigenvalues to appear pairwise $(\lambda, -\lambda)$ as they should. With the help of a newly established implicit Γ -orthogonality theorem, we incorporate the implicit multi-shift technique to accelerate the convergence of the ΓQR algorithm. Numerical experiments are given to show the effectiveness of the algorithm.

@ 2017 Elsevier Inc. All rights reserved.

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2017.01.005} 0024-3795 \ensuremath{\oslash}\ 2017 \ Elsevier \ Inc. \ All \ rights \ reserved.$

^{*} Corresponding author.

E-mail addresses: txli@seu.edu.cn (T. Li), rcli@uta.edu (R.-C. Li), wwlin@am.nctu.edu.tw (W.-W. Lin).

 $^{^1\,}$ Supported in part by the NSFC grants 11471074 and 91330109.

 $^{^2\,}$ Supported in part by NSF grants DMS-1317330 and CCF-1527104, and NSFC grant 11428104.

 $^{^3}$ Supported in part by the National Center of Theoretical Sciences, and the ST Yau Centre at the National Chiao Tung University.

1. Introduction

In this paper, we consider the standard eigenvalue problem of the form

$$\mathscr{H}\boldsymbol{x} \equiv \begin{bmatrix} A & B \\ -B & -A \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} = \lambda \boldsymbol{x}, \tag{1.1}$$

where A and B are $n \times n$ real symmetric matrices. We refer to it a linear response eigenvalue problem (LREP). Any complex scalar λ and nonzero 2*n*-dimensional column vector \boldsymbol{x} that satisfy (1.1) are called an *eigenvalue* and its associated *eigenvector*, respectively, and correspondingly, $(\lambda, \boldsymbol{x})$ is called an *eigenpair*.

Our consideration of this problem is motivated by Casida's eigenvalue equations in [1-4]. In computational quantum chemistry and physics, the excitation states and response properties of molecules and clusters are predicted by the linear-response timedependent density functional theory. The excitation energies and transition vectors (oscillator strengths) of molecular systems can be calculated by solving Casida's eigenvalue equations [1-3]. There has been a great deal of recent work on and interest in developing efficient numerical algorithms and simulation techniques for computing excitation responses of molecules and for material designs in energy science [5-12].

Let

$$\Gamma_0 = \begin{bmatrix} I_n & 0\\ 0 & -I_n \end{bmatrix}, \ \Pi \equiv \Pi_{2n} = \begin{bmatrix} 0 & I_n\\ I_n & 0 \end{bmatrix}.$$
(1.2)

The matrix \mathscr{H} in (1.1) satisfies

$$\Gamma_0 \mathscr{H} = \begin{bmatrix} A & B \\ B & A \end{bmatrix} \text{ and } \mathscr{H}\Pi = -\Pi \mathscr{H}.$$
(1.3)

As a result of the second equation in (1.3), if $(\lambda, \boldsymbol{x})$ is an eigenpair of \mathcal{H} , i.e., $\mathcal{H}\boldsymbol{x} = \lambda\boldsymbol{x}$, then $(-\lambda, \Pi\boldsymbol{x})$ is also an eigenpair of \mathcal{H} , and if also $\lambda \notin \mathbb{R}$, then $(\bar{\lambda}, \bar{\boldsymbol{x}})$ and $(-\bar{\lambda}, \Pi \bar{\boldsymbol{x}})$ are eigenpairs of \mathcal{H} as well, where $\bar{\lambda}$ is the complex conjugate of λ and $\bar{\boldsymbol{x}}$ takes entrywise complex conjugation.

Previously in [5,6,13], LREP (1.1) was well-studied under the condition that $\Gamma_0 \mathscr{H}$ is positive definite. For the case, all eigenvalues of \mathscr{H} are real. Without the positive definite condition, the methods developed in [5,6,13] are not applicable.

Let \mathbb{J}_n be the set of all $n \times n$ diagonal matrices with ± 1 on the diagonal and set

$$\boldsymbol{\Gamma}_{2n} = \{ \operatorname{diag}(J, -J) : J \in \mathbb{J}_n \}.$$

Note that $\Gamma_0 = \text{diag}(I_n, -I_n) \in \boldsymbol{\Gamma}_{2n}$. In this paper, we will study an eigenvalue problem for which the condition that $\Gamma_0 \mathscr{H}$ is positive definite is no longer assumed and it in fact includes LREP (1.1) as a special case. Specifically, we will consider the following eigenvalue problem Download English Version:

https://daneshyari.com/en/article/5773114

Download Persian Version:

https://daneshyari.com/article/5773114

Daneshyari.com