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For a Markov chain described by an irreducible stochastic 
matrix A of order n, the mean first passage time mi,j

measures the expected time for the Markov chain to reach 
state j for the first time given that the system begins 
in state i, thus quantifying the short-term behaviour of 
the chain. In this article, a lower bound for the maximum 
mean first passage time is found in terms of the stationary 
distribution vector of A, and some matrices for which equality 
is attained are produced. The main objective of this article is 
to characterise the directed graphs for which any stochastic 
matrix A respecting this directed graph attains equality in 
this lower bound, producing a class of Markov chains with 
optimal short-term behaviour.
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1. Introduction

A stochastic matrix A is an entrywise nonnegative matrix whose rows sum to 1, i.e. 
A1 = 1, where 1 represents the vector of all ones. Stochastic matrices are central to the 
study of Markov chains, which are a type of probabilistic model describing dynamical 
systems which move between some finite number of states in discrete time-steps, where 
these transitions between states depend only on the present state occupied by the system. 
The connection with stochastic matrices is the following: given a Markov chain describing 
a system with a finite state space indexed by the integers {1, 2, . . . , n}, construct a matrix 
such that the (i, j)th entry is the probability of the system transitioning from state i to 
state j in a single time step. This is a stochastic matrix, referred to as the probability 
transition matrix, or simply transition matrix of the chain. This transition matrix A
wholly represents the Markov chain, in that given an initial vector u0 describing the 
probabilities that the process is in one of the various states at time 0, the probability 
distribution across all states after k time-steps is the vector u�

0 A
k, for k ≥ 1.

Representing a Markov chain by a stochastic matrix in this way enables us to anal-
yse the long-term behaviour of the modelled system using basic techniques from linear 
algebra. If the transition matrix A is irreducible – i.e. for any pair of indices i, j, there 
exists some m ∈ N such that the (i, j)th entry of Am is positive – then by the Perron–
Frobenius theorem, A must have a strictly positive left eigenvector w = [w1 w2 · · · wn]�

corresponding to the eigenvalue 1. This eigenvector, when normalised so that the entries 
sum to 1 (thus producing a probability distribution) is referred to as the stationary dis-
tribution vector of the chain. It is an important quantity for the following reason: in the 
case that the transition matrix A is also primitive – i.e. there exists some m ∈ N for 
which every entry of Am is positive – the iterates of the chain converge to w� indepen-
dent of the initial distribution. This is powerful in analysing the underlying system, since 
we can then say that the probability the Markov chain is in the ith state in the long term 
is the ith entry wi of this eigenvector w�. Thus the long-term behaviour of the modelled 
system is summarised by a fundamental feature of the corresponding stochastic matrix.

The short-term behaviour of a system modelled by a Markov chain is considered as 
follows. Define Fi,j to be a random variable representing the first passage time from state 
i to state j; i.e. the number of time steps elapsed (≥ 1) before the system reaches state 
j for the first time, given that it began in state i. The expected value of this random 
variable, then, is a key quantity of interest. It is referred to as the mean first passage 
time from i to j, denoted mi,j . In the special case that i = j, mi,i is referred to as the 
mean first return time to state i. This facilitates the construction of the matrix of mean 
first passage times M = [mi,j ] which is the unique solution (see [15, Section 6.1]) to the 
equation

M = A(M −Mdiag) + J, (1.1)
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