Accepted Manuscript

More on operator monotone and operator convex functions of several variables

Hamed Najafi

PII:	S0024-3795(17)30397-X
DOI:	http://dx.doi.org/10.1016/j.laa.2017.06.033
Reference:	LAA 14233

To appear in: Linear Algebra and its Applications

Received date: 3 April 2017
Accepted date: 22 June 2017

Please cite this article in press as: H. Najafi, More on operator monotone and operator convex functions of several variables, Linear Algebra Appl. (2017), http://dx.doi.org/10.1016/j.laa.2017.06.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

MORE ON OPERATOR MONOTONE AND OPERATOR CONVEX FUNCTIONS OF SEVERAL VARIABLES

HAMED NAJAFI

Abstract

Let $C_{1}, C_{2}, \ldots, C_{k}$ be positive matrices in M_{n} and f be a continuous real-valued function on $[0, \infty)$. In addition, consider Φ as a positive linear functional on M_{n} and define $$
\phi\left(t_{1}, t_{2}, t_{3}, \ldots, t_{k}\right)=\Phi\left(f\left(t_{1} C_{1}+t_{2} C_{2}+t_{3} C_{3}+\ldots+t_{k} C_{k}\right)\right)
$$ as a k variables continuous function on $[0, \infty) \times \ldots \times[0, \infty)$. In this paper, we show that if f is an operator convex function of order $m n$, then ϕ is a k variables operator convex function of order $\left(n_{1}, \ldots, n_{k}\right)$ such that $m=n_{1} n_{2} \ldots n_{k}$. Also, if f is an operator monotone function of order n^{k+1}, then ϕ is a k variables operator monotone function of order n. In particular, if f is a non-negative operator decreasing function on $[0, \infty)$, then the function $t \rightarrow \Phi(f(A+t B))$ is an operator decreasing and can be written as a Laplace transform of a positive measure.

1. Introduction

Let $\mathbb{B}(\mathscr{H})$ denote the C^{*}-algebra of all bounded linear operators on a complex Hilbert space $(\mathscr{H},\langle\cdot, \cdot\rangle)$ and let I be the identity operator. An operator $A \in \mathbb{B}(\mathscr{H})$ is called positive if $\langle A x, x\rangle \geq 0$ holds for every $x \in \mathscr{H}$ and then we can write $A \geq 0$. We say, $A \leq B$ if $B-A \geq 0$; see [1] for other possible orders.

For a continuous real-valued function f and a self adjoint operator A with spectrum in the domain of f, the operator $f(A)$ is defined by the continuous functional calculus. In particular, if \mathscr{H} is a Hilbert space of finite dimension n and $A \in M_{n}(=\mathbb{B}(\mathscr{H}))$ has the spectral decomposition $A=\sum_{i=1}^{n} \lambda_{i} P_{i}$, where P_{i} is the projection corresponding to the eigenspace of the eigenvalue λ_{i} of A, then

$$
f(A)=\sum_{i=1}^{n} f\left(\lambda_{i}\right) P_{i} .
$$

A continuous function $f: J \rightarrow \mathbb{R}$ defined on an interval J is said to be matrix monotone (or matrix increasing) of order n if $A \leq B$ implies that $f(A) \leq f(B)$ for any pair of self adjoint $n \times n$ matrices A, B with spectra in J. A function f is called matrix decreasing of order n if $-f$ is a matrix monotone function of order n. Also,

[^0]
https://daneshyari.com/en/article/5773133

Download Persian Version:
https://daneshyari.com/article/5773133

Daneshyari.com

[^0]: 2010 Mathematics Subject Classification. 47A05, 44A10, 15A16.
 Key words and phrases. Operator monotone functions, Operator convex functions, BMV conjecture, Laplace transform.

