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Abstract

We study operators which have (infinite) matrix representation whose entries are mul-
tiplicative functions of two variables. We show that the such operators are infinite tensor
products over the primes. Applications to finding the eigenvalues explicitly of arithmetical
matrices are given; also boundedness and norms of Multiplicative Toeplitz and Hankel opera-
tors are discussed.
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Introduction
In this paper we shall consider infinite matrices A = (aij)i,j≥1 whose entries are multiplicative as a
function of two variables; i.e. amn = f(m,n), where f : N2 → C is not identically zero and satisfies

f(m1n1,m2n2) = f(m1,m2)f(n1, n2) whenever (m1m2, n1n2) = 1.

We are interested in knowing when such matrices induce bounded operators (on �2) and further-
more, what we can say about their (operator) norms and spectra.

The motivation for this investigation is twofold. In a recent paper [10], the singular values
(see §1.2 for the definition) of Mn = Mn(α), the n × n matrix with ijth-entry (i/j)−α if j|i and
zero otherwise, were shown to be approximable by the eigenvalues of the operator given by infinite
matrix

Eα =
( (ij)α
[i, j]

)
i,j≥1

.

More precisely, with sr(Mn) denoting the rth largest singular value of Mn and λr(Eα) the rth

largest eigenvalue of Eα, it was shown that for α < 1
4 ,

sr(Mn)
2 ∼ λr(Eα)

n1−2α

1− 2α
as n → ∞. (1.1)

Note that Eα has multiplicative entries. It leads naturally to the question of identifying these
eigenvalues and whether (1.1) remains true for 1

4 ≤ α < 1
2 . In particular whether Eα is bounded,

indeed compact, for such α — we shall settle the boundedness question here. More generally the
above was done for n × n matrices with entries f(i/j) when j|i and zero otherwise, where f is a
square summable multiplicative function on N. See also [14] for related matrices.

Another motivation comes from Multiplicative Toeplitz operators, whose matrix representation
has entries of the form aij = g(i/j) for a given g : Q+ → C. Such operators have been studied in
[11], for their connection with Dirichlet series, and in particular the Riemann zeta function. If g is
multiplicative as a function on the positive rationals, the matrix has multiplicative entries.

Our main result in this paper is to show that under a natural convergence condition, such
matrices A are tensor products of operators over the primes (like an Euler product) with the
tensor product corresponding to the prime p having matrix representation Ãp = (f(pk, pl))k,l≥0.
For finite matrices, this was inspired by a result of Codecá and Nair [4] and generalizes it. The
result for infinite matrices can be seen as a limiting case of this.

Thus for example, with aij = g(i/j) and g multiplicative as above, Ãp is the Toeplitz matrix
(g(pk−l))k,l≥0 = T (ap), where ap(t) =

∑∞
k=−∞ g(pk)tk is the ‘symbol’. Then we can deduce
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