Expressing infinite matrices over rings as products of involutions

Xin Hou ${ }^{\text {a,* }}$, Shangzhi Li ${ }^{\text {a }}$, Qingqing Zheng ${ }^{\text {b }}$
${ }^{\text {a }}$ LMIB \& School of Mathematics and Systems Science, Beihang University, Beijing, 100191, PR China
${ }^{\text {b }}$ Shenyuan Honors College, Beihang University, Beijing, 100191, PR China

A R T I C L E I N F O

Article history:

Received 19 April 2017
Accepted 2 July 2017
Available online 5 July 2017
Submitted by P. Semrl

MSC:

15A23
20H25
20H20
Keywords:
Products of involutions
Products of coninvolutions
Infinite matrices
Triangular matrices

Abstract

Let K be an arbitrary field and R be an arbitrary associative ring with identity 1 . Słowik in [12] proved that each matrix of $\pm \mathrm{UT}(\infty, K)$ (the group of upper triangular infinite matrices whose entries lying on the main diagonal are equal to either 1 or -1) can be expressed as a product of at most five involutions. In this article, we extend the investigate to an arbitrary associative ring R with identity 1 . Our conclusion is that every element of $\pm \mathrm{UT}(\infty, R)$ can be expressed as a product of at most four involutions. We also prove that for the complex field every element of $\Omega \mathrm{T}(\infty, \mathbb{C})$ (the group of upper triangular infinite matrices whose entries lying on the main diagonal satisfy $a \bar{a}=1$) can be expressed as a product of at most three coninvolutions (matrices satisfying $A \bar{A}=I$).

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Product of involutions is a hot topic investigated by many scholars. Given a group, an involution is an element of order two. Properties of involutions and some other informa-

[^0]tion can be found in $[1,9,13]$. As a special case, products of two involutions have drawn more attention from scholars. Details can be found in [2-4,7,15]. Based on this, some scholars have turned their attention to the problem of expressing the elements of a group as products of involutions (see [10,11,14,16]). One of the most typical findings (in [5]) is that every $n \times n$ square matrix over a field, with determinant ± 1, is a product of not more than four involutions. Słowik [12] investigated this issue for infinite upper triangular matrices over an arbitrary field. In that case, if a triangular matrix is a product of involutions, its elements from the main diagonal must lie in the set $\{1,-1\}$. Denote the group of elements with such diagonals by $\pm \mathrm{UT}(\infty, K)$. For any field, Słowik proved that every element of this group can be expressed as a product of at most five involutions and for fields of characteristic different from 2 , four involutions suffice. In fact, when the characteristic of K is 2 , every element g of $\pm \mathrm{UT}(\infty, K)$ can also be expressed as a product of at most four involutions since the decomposition " $g=d u v$ " in the proof of Theorem 1.1 of [12] is just " $g=u v$ " (d is just the identity matrix in that case). In this article, we extend Słowik's result to an arbitrary associative ring with identity 1. What's more, for the complex field \mathbb{C}, we prove that every element of $\Omega \mathrm{T}(\infty, \mathbb{C})$ (the group of upper triangular infinite matrices whose entries lying on the main diagonal satisfy $a \bar{a}=1$) can be expressed as a product of at most three coninvolutions (matrices satisfying $A \bar{A}=I$).

Now we give some notation for this article. Let $\mathrm{T}(n, R)$ and $\mathrm{T}(\infty, R)$ be the group of upper triangular matrices over an associative ring R of dimension n and infinite, respectively. $\mathrm{UT}(n, K)$ and $\mathrm{UT}(\infty, K)$ stand for the group of upper triangular matrices whose entries on the main diagonal are equal to the identity 1 . Denote by I_{n} and I_{∞} the $n \times n$ and $\mathbb{N} \times \mathbb{N}$ identity matrices, respectively. An $n \times n(\mathbb{N} \times \mathbb{N})$ matrix A is called an involution if $A^{2}=I_{n}\left(A^{2}=I_{\infty}\right)$. Denote by $a_{i j}$ the (i, j)-entry of a matrix A. We put

$$
\begin{aligned}
& \pm \mathrm{UT}(n, R)=\left\{A \in \mathrm{~T}(n, R) \mid a_{i i} \in\{1,-1\} \text { for all } 1 \leq i \leq n\right\}, \\
& \pm \mathrm{UT}(\infty, R)=\left\{A \in \mathrm{~T}(\infty, R) \mid a_{i i} \in\{1,-1\} \text { for all } i \geq 1\right\}, \\
& \pm \mathrm{D}(n, R)=\left\{A \in \pm \mathrm{UT}(n, R) \mid a_{i j}=0, \text { for all } i \neq j\right\}, \\
& \pm \mathrm{D}(\infty, R)=\left\{A \in \pm \mathrm{UT}(\infty, R) \mid a_{i j}=0, \text { for all } i \neq j\right\} .
\end{aligned}
$$

The first main result is the following.

Theorem 1.1. Assume that R is an associative ring with identity 1. Then every element of the group $\pm \mathrm{UT}(n, R)$ and $\pm \mathrm{UT}(\infty, R)$ can be expressed as a product of at most four involutions.

Define an $n \times n(\mathbb{N} \times \mathbb{N})$ complex matrix A a coninvolution if $A \bar{A}=I_{n}\left(A \bar{A}=I_{\infty}\right)$. Coninvolutions are usually studied in the theory of consimilarity and condiagonalizability (see $[6,8]$). Let \mathbb{C} be the complex field. We put

https://daneshyari.com/en/article/5773141

Download Persian Version:

https://daneshyari.com/article/5773141

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: houge19870512@126.com (X. Hou), lisz@buaa.edu.cn (S. Li), zqq1052@163.com (Q. Zheng).

