

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Expressing infinite matrices over rings as products of involutions

LINEAR

olications

Xin Hou^{a,*}, Shangzhi Li^a, Qingqing Zheng^b

 ^a LMIB & School of Mathematics and Systems Science, Beihang University, Beijing, 100191, PR China
 ^b Shenyuan Honors College, Beihang University, Beijing, 100191, PR China

ARTICLE INFO

Article history: Received 19 April 2017 Accepted 2 July 2017 Available online 5 July 2017 Submitted by P. Semrl

MSC: 15A23 20H25 20H20

Keywords: Products of involutions Products of coninvolutions Infinite matrices Triangular matrices

ABSTRACT

Let K be an arbitrary field and R be an arbitrary associative ring with identity 1. Słowik in [12] proved that each matrix of $\pm UT(\infty, K)$ (the group of upper triangular infinite matrices whose entries lying on the main diagonal are equal to either 1 or -1) can be expressed as a product of at most five involutions. In this article, we extend the investigate to an arbitrary associative ring R with identity 1. Our conclusion is that every element of $\pm UT(\infty, R)$ can be expressed as a product of at most four involutions. We also prove that for the complex field every element of $\Omega T(\infty, \mathbb{C})$ (the group of upper triangular infinite matrices whose entries lying on the main diagonal satisfy $a\overline{a} = 1$) can be expressed as a product of at most three coninvolutions (matrices satisfying $A\overline{A} = I$).

@ 2017 Elsevier Inc. All rights reserved.

1. Introduction

Product of involutions is a hot topic investigated by many scholars. Given a group, an involution is an element of order two. Properties of involutions and some other informa-

* Corresponding author.

E-mail addresses: houge19870512@126.com (X. Hou), lisz@buaa.edu.cn (S. Li), zqq1052@163.com (Q. Zheng).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2017.07.001} 0024-3795 \end{tabular} 0217 \ \mbox{Elsevier Inc. All rights reserved}.$

tion can be found in [1,9,13]. As a special case, products of two involutions have drawn more attention from scholars. Details can be found in [2-4,7,15]. Based on this, some scholars have turned their attention to the problem of expressing the elements of a group as products of involutions (see [10,11,14,16]). One of the most typical findings (in [5]) is that every $n \times n$ square matrix over a field, with determinant ± 1 , is a product of not more than four involutions. Slowik [12] investigated this issue for infinite upper triangular matrices over an arbitrary field. In that case, if a triangular matrix is a product of involutions, its elements from the main diagonal must lie in the set $\{1, -1\}$. Denote the group of elements with such diagonals by $\pm UT(\infty, K)$. For any field, Słowik proved that every element of this group can be expressed as a product of at most five involutions and for fields of characteristic different from 2, four involutions suffice. In fact, when the characteristic of K is 2, every element q of $\pm \mathrm{UT}(\infty, K)$ can also be expressed as a product of at most four involutions since the decomposition "q = duv" in the proof of Theorem 1.1 of [12] is just "q = uv" (d is just the identity matrix in that case). In this article, we extend Słowik's result to an arbitrary associative ring with identity 1. What's more, for the complex field \mathbb{C} , we prove that every element of $\Omega T(\infty, \mathbb{C})$ (the group of upper triangular infinite matrices whose entries lying on the main diagonal satisfy $a\overline{a} = 1$) can be expressed as a product of at most three coninvolutions (matrices satisfying $A\overline{A} = I$).

Now we give some notation for this article. Let T(n, R) and $T(\infty, R)$ be the group of upper triangular matrices over an associative ring R of dimension n and infinite, respectively. UT(n, K) and $UT(\infty, K)$ stand for the group of upper triangular matrices whose entries on the main diagonal are equal to the identity 1. Denote by I_n and I_∞ the $n \times n$ and $\mathbb{N} \times \mathbb{N}$ identity matrices, respectively. An $n \times n$ ($\mathbb{N} \times \mathbb{N}$) matrix A is called an involution if $A^2 = I_n$ ($A^2 = I_\infty$). Denote by a_{ij} the (i, j)-entry of a matrix A. We put

$$\pm \operatorname{UT}(n, R) = \{ A \in \operatorname{T}(n, R) | a_{ii} \in \{1, -1\} \text{ for all } 1 \le i \le n \} \}$$

$$\pm \operatorname{UT}(\infty, R) = \{ A \in \operatorname{T}(\infty, R) | a_{ii} \in \{1, -1\} \text{ for all } i \ge 1 \}$$

$$\pm \operatorname{D}(n, R) = \{ A \in \pm \operatorname{UT}(n, R) | a_{ij} = 0, \text{ for all } i \ne j \}$$

$$\pm \operatorname{D}(\infty, R) = \{ A \in \pm \operatorname{UT}(\infty, R) | a_{ij} = 0, \text{ for all } i \ne j \}$$

The first main result is the following.

Theorem 1.1. Assume that R is an associative ring with identity 1. Then every element of the group $\pm UT(n, R)$ and $\pm UT(\infty, R)$ can be expressed as a product of at most four involutions.

Define an $n \times n$ ($\mathbb{N} \times \mathbb{N}$) complex matrix A a coninvolution if $A\overline{A} = I_n$ ($A\overline{A} = I_\infty$). Coninvolutions are usually studied in the theory of consimilarity and condiagonalizability (see [6,8]). Let \mathbb{C} be the complex field. We put Download English Version:

https://daneshyari.com/en/article/5773141

Download Persian Version:

https://daneshyari.com/article/5773141

Daneshyari.com