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MAXIMAL DOUBLY STOCHASTIC MATRIX
CENTRALIZERS
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Abstract. We describe doubly stochastic matrices with maximal
centralizers.
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1. Introduction

Let Mn be the algebra of all n-by-n matrices over the complex
field C and let I ∈ Mn be its identity. One of the relations which is often
used on Mn, both in pure and applied problems, is commutativity [13,
14, 15, 16]. In the study of commutativity the notion of centralizer (also
called commutant) has an important role. For A ∈ Mn its centralizer,
denoted by C(A), is the set of all matrices commuting with A, that is

C(A) = {X ∈ Mn : AX = XA},
and for a set S ⊆ Mn its centralizer, denoted by C(S), is the intersection
of centralizers of all its elements, that is

C(S) = {X ∈ Mn : AX = XA, for every A ∈ S}.
The Centralizer Theorem (see [6], p. 113 Corollary 1, or [16], p. 106
theorem 2) states that C(C(A)) = C[A] where C[X] ⊆ Mn denotes the
unital algebra spanned by X ∈ Mn. It is well known that the central
elements of Mn are the scalar matrices, C(Mn) = {αI : α ∈ C}.
The centralizer induces an equivalence relation, ∼, and a preorder

relation, �, on Mn:

• A and B are C-equivalent, A ∼ B, if C(A) = C(B),
• A � B if C(A) ⊆ C(B).

For a preoder � on Mn we say that:

• a non-scalar matrix A is minimal if for every matrix X with
C(X) ⊆ C(A) it follows C(A) = C(X),

• a non-scalar matrix A is maximal if for every non-scalar matrix
X with C(X) ⊇ C(A) it follows C(A) = C(X).

1This work was partially supported by national funds of FCT-Foundation
for Science and Technology under the projects UID/MAT/00212/2013 and
UID/MAT/00297/2013, and by Slovenian Research Agency (research core fund-
ing No. P1-0288 and No. P1-0222).

1



Download English Version:

https://daneshyari.com/en/article/5773147

Download Persian Version:

https://daneshyari.com/article/5773147

Daneshyari.com

https://daneshyari.com/en/article/5773147
https://daneshyari.com/article/5773147
https://daneshyari.com

