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For a square-free bivariate polynomial p of degree n we 
introduce a simple and fast numerical algorithm for the 
construction of n × n matrices A, B, and C such that 
det(A +xB+yC) = p(x, y). This is the minimal size needed to 
represent a bivariate polynomial of degree n. Combined with a 
square-free factorization one can now compute n ×n matrices 
for any bivariate polynomial of degree n. The existence of such 
symmetric matrices was established by Dixon in 1902, but, up 
to now, no simple numerical construction has been found, even 
if the matrices can be nonsymmetric. Such representations 
may be used to efficiently numerically solve a system of two 
bivariate polynomials of small degree via the eigenvalues of 
a two-parameter eigenvalue problem. The new representation 
speeds up the computation considerably.
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1. Introduction

Let

p(x, y) :=
n∑

i=0

n−i∑
j=0

pij x
i yj , (1)

where pij ∈ C for all i, j, be a bivariate polynomial of degree n, where we assume that 
pij �= 0 for at least one index such that i +j = n. We say that matrices A, B, C ∈ C

m×m, 
where m ≥ n, form a determinantal representation of order m of the polynomial p if

det(A + xB + yC) = p(x, y). (2)

It is known since Dixon’s 1902 paper [5] that every bivariate polynomial of degree 
n admits a determinantal representation with symmetric matrices of order n. However, 
the construction of such matrices is far from trivial and up to now there have been no 
efficient numerical algorithms, even if we do not insist on matrices being symmetric. We 
introduce the first efficient numerical construction of determinantal representations that 
returns n ×n matrices for a square-free bivariate polynomial of degree n, which, with the 
exception of the symmetry, agrees with Dixon’s result. For non square-free polynomials 
one can combine it with a square-free factorization to obtain a representation of order n.

Our motivation comes from the following approach for finding roots of systems of 
bivariate polynomials, proposed by Plestenjak and Hochstenbach in [14]. Suppose that 
we have a system of two bivariate polynomials

p(x, y) :=
n1∑
i=0

n1−i∑
j=0

pij x
i yj = 0,

q(x, y) :=
n2∑
i=0

n2−i∑
j=0

qij x
i yj = 0.

(3)

The idea is to construct matrices A1, B1, C1 of size m1 ×m1 and matrices A2, B2, C2 of 
size m2 ×m2 such that

det(A1 + xB1 + yC1) = p(x, y),

det(A2 + xB2 + yC2) = q(x, y)
(4)

and then numerically solve the equivalent two-parameter eigenvalue problem [1]

(A1 + xB1 + yC1)u1 = 0,

(A2 + xB2 + yC2)u2 = 0.
(5)
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