Some families of operator norm inequalities

Imam Nugraha Albania ${ }^{\text {a }}$, Masaru Nagisa ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics Education, Universitas Pendidikan Indonesia (UPI), Jl. Dr Setia Budhi 229, Bandung 40154, Indonesia
${ }^{\text {b }}$ Graduate School of Science, Chiba University, Chiba 263-8522, Japan

A R T I C L E I N F O

Article history:

Received 7 May 2017
Accepted 21 June 2017
Available online 27 June 2017
Submitted by P. Semrl

MSC:

primary 47A53, 47A64
secondary 15A42, 15A45, 15A60

Keywords:

McIntosh's inequality
Operator norm inequality
Unitarily invariant norm
Positive definite function
Infinitely divisible function

A B S T R A C T
We consider the function $f_{\alpha, \beta}(t)=t^{\gamma(\alpha, \beta)} \prod_{i=1}^{n} \frac{b_{i}\left(t^{a_{i}}-1\right)}{a_{i}\left(t^{b_{i}}-1\right)}$ on the interval $(0, \infty)$, where $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \beta=$ $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$ and $\gamma(\alpha, \beta)=\left(1-\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)\right) / 2$. In [4], Hiai and Kosaki define the relation \preceq using positive definiteness for functions f and g with some suitable conditions and they have proved this relation implies the operator norm inequality associated with functions f and g. In this paper, we give some conditions for $\alpha^{\prime}, \beta^{\prime} \in \mathbb{R}^{m}$ to hold the relation $f_{\alpha, \beta}(t) \preceq f_{\alpha^{\prime}, \beta^{\prime}}(t)$.
© 2017 Published by Elsevier Inc.

1. Introduction

When $f:(0, \infty) \longrightarrow(0, \infty)$ is continuous and satisfies $f(1)=1$, we denote $f \in C(0, \infty)_{1}^{+}$. We call $f \in C(0, \infty)_{1}^{+}$symmetric if it holds $f(t)=t f(1 / t)$. For $f, g \in C(0, \infty)_{1}^{+}$, we define $f \preceq g$ if the function

[^0]$$
\mathbb{R} \ni x \mapsto \frac{f\left(e^{x}\right)}{g\left(e^{x}\right)}
$$
is positive definite, where a function $\varphi: \mathbb{R} \longrightarrow \mathbb{C}$ is positive definite means that, for any positive integer n and real numbers $x_{1}, x_{2}, \ldots, x_{n}$, the $n \times n$ matrix $\left[\varphi\left(x_{i}-x_{j}\right)\right]_{i, j=1}^{n}$ is positive definite, i.e.,
$$
\sum_{i, j=1}^{n} \alpha_{i} \overline{\alpha_{j}} \varphi\left(x_{i}-x_{j}\right) \geq 0
$$
for any $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{C}$. For $f \in C(0, \infty)_{1}^{+}$, we define a continuous map $M_{f}:(0, \infty) \times$ $(0, \infty) \longrightarrow(0, \infty)$ as follows:
$$
M_{f}(s, t)=t f\left(\frac{s}{t}\right)
$$

Then it holds that $M_{f}(1,1)=1, M_{f}(\alpha s, \alpha t)=\alpha M_{f}(s, t)(\alpha>0)$ and

$$
M_{f}(s, t)=M_{f}(t, s)
$$

if f is symmetric.
We define the inner product $\langle\cdot, \cdot\rangle$ on $\mathbb{M}_{N}(\mathbb{C})$ by $\langle X, Y\rangle=\operatorname{Tr}\left(Y^{*} X\right)$ for $X, Y \in \mathbb{M}_{N}(\mathbb{C})$. When $A \in \mathbb{M}_{N}(\mathbb{C})$, we can define bounded linear operator L_{A} and R_{A} on the Hilbert space $\left(\mathbb{M}_{N}(\mathbb{C}),\langle\cdot, \cdot\rangle\right)$ as follows:

$$
L_{A}(X)=A X, \quad R_{A}(X)=X A \quad \text { for } X \in \mathbb{M}_{N}(\mathbb{C})
$$

If both H and K are positive, invertible matrix in $\mathbb{M}_{N}(\mathbb{C})$ (in short, $H, K>0$), then L_{H} and R_{K} are also positive, invertible operators on $\left(\mathbb{M}_{N}(\mathbb{C}),\langle\cdot, \cdot\rangle\right)$ and satisfy the relation $L_{H} R_{K}=R_{K} L_{H}$. Using continuous function calculus of operators, we can consider the operator $M_{f}\left(L_{H}, R_{K}\right)\left(=R_{K} f\left(L_{H} R_{K}^{-1}\right)\right)$ on $\left(\mathbb{M}_{N}(\mathbb{C}),\langle\cdot, \cdot\rangle\right)$.

In [4], F. Hiai and H. Kosaki has given the following equivalent conditions for $f, g \in$ $C(0, \infty)_{1}^{+}$satisfying the symmetric condition:
(1) there exists a symmetric probability measure ν on \mathbb{R} such that

$$
M_{f}\left(L_{H}, R_{K}\right) X=\int_{-\infty}^{\infty} H^{i s}\left(M_{g}\left(L_{H}, R_{K}\right) X\right) K^{-i s} d \nu(s)
$$

for all $H, K, X \in \mathbb{M}_{N}(\mathbb{C})$ with $H, K>0$.
(2) $\left|\left|\left|M_{f}\left(L_{H}, R_{K}\right) X\right|\|\leq\|\right|\right| M_{g}\left(L_{H}, R_{K}\right) X \mid \|$ for all $H, K, X \in \mathbb{M}_{N}(\mathbb{C})$ with $H, K>0$ and any unitarily invariant norm $\|\|\cdot\|\|$, which means $\||U X\|\|=\||X|\|=\|\mid X U\|$ for any unitary $U \in \mathbb{M}_{N}(\mathbb{C})$ and any matrix $X \in \mathbb{M}_{N}(\mathbb{C})$.

https://daneshyari.com/en/article/5773168

Download Persian Version:
https://daneshyari.com/article/5773168

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: albania@upi.edu (I.N. Albania), nagisa@math.s.chiba-u.ac.jp (M. Nagisa).

