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We consider the function fag(t) = t"(@& [, %

on the interval (0,00), where a = (ai,a2,...,an),8 =
(b1,b2,...,b,) € R™ and y(a, 8) = (1 — 227, (a; — b;))/2.
In [4], Hiai and Kosaki define the relation < using positive
definiteness for functions f and g with some suitable condi-
tions and they have proved this relation implies the operator
norm inequality associated with functions f and g. In this
paper, we give some conditions for o/, 8" € R™ to hold the
relation fo,5(t) X far,p (1).

© 2017 Published by Elsevier Inc.

1. Introduction

When f : (0,00) — (0,00) is continuous and satisfies f(1) = 1, we denote
f € C(0,00)f. We call f € C(0,00)] symmetric if it holds f(t) = tf(1/t). For
f,9 € C(0,00)], we define f < g if the function
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f(e®)
g(e”)

is positive definite, where a function ¢ : R — C is positive definite means that, for any

Roz—

positive integer n and real numbers x1, g, ..., Ty, the n x n matrix [p(v; — x;)]};_; is
positive definite, i.e.,

> aiage(ri — ;) >0

ij=1

for any i, az,...,a, € C. For f € C(0,00)], we define a continuous map M; : (0, 00) x
(0,0) — (0, 00) as follows:

s
My (s.8) = 12,

Then it holds that My(1,1) = 1, Ms(as, at) = aMy(s,t) (> 0) and
Mf(sv t) = Mf(tv s)

if f is symmetric.

We define the inner product (-, -) on My (C) by (X,Y) = Tr(Y*X) for X, Y € My(C).
When A € My(C), we can define bounded linear operator L4 and R4 on the Hilbert
space (My(C), (-, -)) as follows:

La(X)=AX, Ru(X)=XA for X € My(C).

If both H and K are positive, invertible matrix in My (C) (in short, H, K > 0), then Ly
and Rk are also positive, invertible operators on (My(C), (-,-)) and satisfy the relation
Ly Rig = RigLpyg. Using continuous function calculus of operators, we can consider the
operator M¢(Ly, Ry )(= Rx f(LuyRg")) on (My(C), (-,-)).

In [4], F. Hiai and H. Kosaki has given the following equivalent conditions for f,g €
C(0,00)] satisfying the symmetric condition:

(1) there exists a symmetric probability measure v on R such that

My(Ly,Rg)X = / H*(My(Ly, Rg)X)K "dv(s)

— 00

for all H, K, X € My/(C) with H, K > 0.

(2) /|M¢(Lu, Rx)X||| < |||Mg(Lu,Ri)X||| for all H, K, X € My(C) with H,K > 0
and any unitarily invariant norm ||| - |||, which means |||[UX]|| = |||X]|| = ||| XU]||
for any unitary U € My (C) and any matrix X € My (C).



Download English Version:

https://daneshyari.com/en/article/5773168

Download Persian Version:

https://daneshyari.com/article/5773168

Daneshyari.com


https://daneshyari.com/en/article/5773168
https://daneshyari.com/article/5773168
https://daneshyari.com

