

Topological classification of systems of bilinear and sesquilinear forms

Carlos M. da Fonseca^a, Vyacheslav Futorny^b, Tetiana Rybalkina^c, Vladimir V. Sergeichuk^{c,*}

^a Department of Mathematics, Kuwait University, Safat 13060, Kuwait

^b Department of Mathematics, University of São Paulo, Brazil

^c Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine

A R T I C L E I N F O

Article history: Received 2 November 2016 Accepted 7 November 2016 Available online 15 November 2016 Submitted by R. Brualdi

MSC: 15A21 37C15

Keywords: Topological classification Bilinear and sesquilinear forms

ABSTRACT

Let \mathcal{A} and \mathcal{B} be two systems consisting of the same vector spaces $\mathbb{C}^{n_1}, \ldots, \mathbb{C}^{n_t}$ and bilinear or sesquilinear forms $A_i, B_i : \mathbb{C}^{n_{k(i)}} \times \mathbb{C}^{n_{l(i)}} \to \mathbb{C}$, for $i = 1, \ldots, s$. We prove that \mathcal{A} is transformed to \mathcal{B} by homeomorphisms within $\mathbb{C}^{n_1}, \ldots, \mathbb{C}^{n_t}$ if and only if \mathcal{A} is transformed to \mathcal{B} by linear bijections within $\mathbb{C}^{n_1}, \ldots, \mathbb{C}^{n_t}$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Two bilinear or sesquilinear forms $A, B : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ are topologically equivalent if there exists a homeomorphism (i.e., a continuous bijection whose inverse is also a continuous bijection) $\varphi : \mathbb{C}^n \to \mathbb{C}^n$ such that $A(u, v) = B(\varphi u, \varphi v)$ for all $u, v \in \mathbb{C}^n$. We

^{*} Corresponding author.

E-mail addresses: carlos@sci.kuniv.edu.kw (C.M. da Fonseca), futorny@ime.usp.br (V. Futorny), rybalkina_t@ukr.net (T. Rybalkina), sergeich@imath.kiev.ua (V.V. Sergeichuk).

prove that two forms are topologically equivalent if and only if they are equivalent; we extend this statement to arbitrary systems of forms. Therefore, the canonical matrices of bilinear and sesquilinear forms given in [10] are also their canonical matrices with respect to topological equivalence.

Two linear operators $A, B : \mathbb{C}^n \to \mathbb{C}^n$ are topologically equivalent if there exists a homeomorphism $\varphi : \mathbb{C}^n \to \mathbb{C}^n$ such that $B(\varphi u) = \varphi(Au)$, for all $u \in \mathbb{C}^n$. The problem of classifying linear operators up to topological equivalence is still open. It is solved by Kuiper and Robbin [11,13] for linear operators without eigenvalues that are roots of unity. It is studied for arbitrary operators in [1–3,8,9] and other papers. The fact that the problem of topological classification of forms is incomparably simpler is very unexpected for the authors; three of them only reduce it to the nonsingular case in [5].

Hans Schneider [15] studies the topological space H_r^n of $n \times n$ Hermitian matrices of rank r and proves that its connected components coincide with the *congruence classes. The closure graphs for the congruence classes of 2×2 and 3×3 matrices and for the *congruence classes of 2×2 matrices are constructed in [4,6]. The problems of topological classification of matrix pencils and chains of linear mappings are studied in [7,14].

2. Form representations of mixed graphs

Let G be a mixed graph; that is, a graph that may have undirected and directed edges (multiple edges and loops are allowed); let $1, \ldots, t$ be its vertices. Its form representation \mathcal{A} of dimension $\underline{n} = (n_1, \ldots, n_t)$ is given by assigning to each vertex *i* the vector space $\mathbb{C}^{n_i} := \mathbb{C} \oplus \cdots \oplus \mathbb{C}$ (n_i times), to each undirected edge $\alpha : i \longrightarrow j$ ($i \leq j$) a bilinear form $A_{\alpha} : \mathbb{C}^{n_i} \times \mathbb{C}^{n_j} \to \mathbb{C}$, and to each directed edge $\beta : i \longrightarrow j$ a sesquilinear form $A_{\beta} : \mathbb{C}^{n_i} \times \mathbb{C}^{n_j} \to \mathbb{C}$ that is linear in the first argument and semilinear (i.e., conjugate linear) in the second. Two form representations \mathcal{A} and \mathcal{B} of dimensions \underline{n} and \underline{m} are topologically isomorphic (respectively, linearly isomorphic) if there exists a family of homeomorphisms (respectively, linear bijections)

$$\varphi_1: \mathbb{C}^{n_1} \to \mathbb{C}^{m_1}, \ \dots, \ \varphi_t: \mathbb{C}^{n_t} \to \mathbb{C}^{m_t} \tag{1}$$

that transforms \mathcal{A} to \mathcal{B} ; that is,

$$A_{\alpha}(u,v) = B_{\alpha}(\varphi_i u, \varphi_j v), \qquad u \in \mathbb{C}^{n_i}, \ v \in \mathbb{C}^{n_j}$$
(2)

for each edge $\alpha : i \longrightarrow j$ or $i \longrightarrow j$.

Example. A form representation

$$A: \qquad A_{\alpha} \bigcirc \mathbb{C}^{n_1} \xrightarrow[A_{\gamma}]{} \mathbb{C}^{n_2} \bigcirc A_{\delta} \tag{3}$$

Download English Version:

https://daneshyari.com/en/article/5773178

Download Persian Version:

https://daneshyari.com/article/5773178

Daneshyari.com