

Topological classification of systems of bilinear and sesquilinear forms

Carlos M. da Fonseca^a, Vyacheslav Futorny^b, Tetiana Rybalkina ^c, Vladimir V. Sergeichuk ^c*,*[∗]

^a Department of Mathematics, Kuwait University, Safat 13060, Kuwait
^b Department of Mathematics, University of São Paulo, Brazil
^c Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine

A R T I C L E I N F O A B S T R A C T

Article history: Received 2 November 2016 Accepted 7 November 2016 Available online 15 November 2016 Submitted by R. Brualdi

MSC: 15A21 37C15

Keywords: Topological classification Bilinear and sesquilinear forms

Let A and B be two systems consisting of the same vector spaces $\mathbb{C}^{n_1}, \ldots, \mathbb{C}^{n_t}$ and bilinear or sesquilinear forms A_i, B_i : $\mathbb{C}^{n_{k(i)}} \times \mathbb{C}^{n_{l(i)}} \to \mathbb{C}$, for $i = 1, \ldots, s$. We prove that A is transformed to \mathcal{B} by homeomorphisms within $\mathbb{C}^{n_1}, \ldots, \mathbb{C}^{n_t}$ if and only if A is transformed to B by linear bijections within $\mathbb{C}^{n_1}, \ldots, \mathbb{C}^{n_t}.$

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Two bilinear or sesquilinear forms $A, B: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ are *topologically equivalent* if there exists a homeomorphism (i.e., a continuous bijection whose inverse is also a continuous bijection) $\varphi : \mathbb{C}^n \to \mathbb{C}^n$ such that $A(u, v) = B(\varphi u, \varphi v)$ for all $u, v \in \mathbb{C}^n$. We

E-mail addresses: carlos@sci.kuniv.edu.kw (C.M. da Fonseca), futorny@ime.usp.br (V. Futorny), rybalkina_t@ukr.net (T. Rybalkina), sergeich@imath.kiev.ua (V.V. Sergeichuk).

<http://dx.doi.org/10.1016/j.laa.2016.11.012> 0024-3795/© 2016 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

prove that *two forms are topologically equivalent if and only if they are equivalent*; we extend this statement to arbitrary systems of forms. Therefore, the canonical matrices of bilinear and sesquilinear forms given in [\[10\]](#page--1-0) are also their canonical matrices with respect to topological equivalence.

Two linear operators $A, B: \mathbb{C}^n \to \mathbb{C}^n$ are *topologically equivalent* if there exists a homeomorphism $\varphi : \mathbb{C}^n \to \mathbb{C}^n$ such that $B(\varphi u) = \varphi(Au)$, for all $u \in \mathbb{C}^n$. The problem of classifying linear operators up to topological equivalence is still open. It is solved by Kuiper and Robbin [\[11,13\]](#page--1-0) for linear operators without eigenvalues that are roots of unity. It is studied for arbitrary operators in $[1-3,8,9]$ and other papers. The fact that the problem of topological classification of forms is incomparably simpler is very unexpected for the authors; three of them only reduce it to the nonsingular case in [\[5\].](#page--1-0)

Hans Schneider [\[15\]](#page--1-0) studies the topological space H_r^n of $n \times n$ Hermitian matrices of rank *r* and proves that its connected components coincide with the [∗]congruence classes. The closure graphs for the congruence classes of 2×2 and 3×3 matrices and for the *congruence classes of 2×2 matrices are constructed in [\[4,6\].](#page--1-0) The problems of topological classification of matrix pencils and chains of linear mappings are studied in [\[7,14\].](#page--1-0)

2. Form representations of mixed graphs

Let *G* be a *mixed graph*; that is, a graph that may have undirected and directed edges (multiple edges and loops are allowed); let 1*, ...,t* be its vertices. Its *form representation* A of dimension $\underline{n} = (n_1, \ldots, n_t)$ is given by assigning to each vertex *i* the vector space $\mathbb{C}^{n_i} := \mathbb{C} \oplus \cdots \oplus \mathbb{C}$ (*n_i* times), to each undirected edge $\alpha : i \longrightarrow j$ ($i \leq j$) a bilinear form $A_{\alpha}: \mathbb{C}^{n_i} \times \mathbb{C}^{n_j} \to \mathbb{C}$, and to each directed edge $\beta: i \longrightarrow j$ a sesquilinear form $A_{\beta}: \mathbb{C}^{n_i} \times \mathbb{C}^{n_j} \to \mathbb{C}$ that is linear in the first argument and semilinear (i.e., conjugate linear) in the second. Two form representations A and B of dimensions n and m are *topologically isomorphic* (respectively, *linearly isomorphic*) if there exists a family of homeomorphisms (respectively, linear bijections)

$$
\varphi_1: \mathbb{C}^{n_1} \to \mathbb{C}^{m_1}, \ \ldots, \ \varphi_t: \mathbb{C}^{n_t} \to \mathbb{C}^{m_t}
$$
 (1)

that transforms $\mathcal A$ to $\mathcal B$; that is,

$$
A_{\alpha}(u,v) = B_{\alpha}(\varphi_i u, \varphi_j v), \qquad u \in \mathbb{C}^{n_i}, \ v \in \mathbb{C}^{n_j}
$$
 (2)

for each edge $\alpha : i \longrightarrow j$ or $i \longrightarrow j$.

Example. *A form representation*

$$
\mathcal{A}: \qquad A_{\alpha} \bigodot \mathbb{C}^{n_1} \xleftarrow{A_{\beta}} \mathbb{C}^{n_2} \bigodot A_{\delta} \qquad (3)
$$

Download English Version:

<https://daneshyari.com/en/article/5773178>

Download Persian Version:

<https://daneshyari.com/article/5773178>

[Daneshyari.com](https://daneshyari.com)