

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Note on hook representations of the symmetric group

LINEAR

lications

Murali K. Srinivasan

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

ARTICLE INFO

Article history: Received 16 August 2016 Accepted 5 November 2016 Available online 16 November 2016 Submitted by R. Brualdi

MSC: 05E10 20C30

Keywords: Hook representations Gelfand–Tsetlin vectors

ABSTRACT

The (complex) irreducible representations of S_n parametrized by hook shapes are well known to be the exterior powers of the standard representation. We write down a simple explicit expression for the Gelfand–Tsetlin vectors of these representations.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The (complex) irreducible representations of the symmetric group S_n are parametrized by Young diagrams with n boxes. Given a Young diagram λ with n boxes, a basic problem is to intuitively understand the irreducible S_n -module V^{λ} parametrized by λ . One way to answer this is to have a combinatorial model of V^{λ} and then to use the combinatorics of this model to explicitly write down the canonically defined Gelfand–Tsetlin basis (defined below) of V^{λ} . Let us make this precise.

E-mail addresses: mks@math.iitb.ac.in, murali.k.srinivasan@gmail.com.

Let \mathcal{Y} denote the set of all Young diagrams (there is a unique Young diagram with zero boxes) and \mathcal{Y}_n denote the set of all Young diagrams with *n* boxes (we write $|\lambda|$ for the number of boxes in a Young diagram λ). A fundamental result (see [1,3,5]) in the representation theory of the symmetric groups constructs, for every positive integer *n*, a bijection, denoted $\lambda \mapsto V^{\lambda}$, between Young diagrams with *n* boxes and equivalence classes of irreducible S_n -modules (we also let V^{λ} denote an irreducible S_n -module in the corresponding equivalence class) such that properties (i) and (ii) below are satisfied:

(i) Initialization: $V^{(2)}$ is the trivial representation of S_2 and $V^{(1,1)}$ is the sign representation of S_2 (here (2), respectively (1, 1), denotes the Young diagram with a single row of two boxes, respectively a single column of two boxes).

(ii) Branching rule: Given $\mu \in \mathcal{Y}$, we denote by μ^- the set of all Young diagrams obtained from μ by removing one of the inner corners in the Young diagram μ . For $n \geq 2$, given $\lambda \in \mathcal{Y}_n$, consider the irreducible S_n -module V^{λ} . Treating V^{λ} as an S_{n-1} -module (we view S_{n-1} as the subgroup of S_n fixing n) we have an S_{n-1} -module isomorphism

$$V^{\lambda} \cong \bigoplus_{\mu \in \lambda^{-}} V^{\mu}$$

It is a consequence of properties (i) and (ii) above that, for any n, the Young diagram consisting of a single row of n boxes (respectively, a single column of n boxes) corresponds to the trivial representation of S_n (respectively, the sign representation of S_n).

Consider an irreducible S_n -module V^{λ} , for $\lambda \in \mathcal{Y}_n$. Since the branching is multiplicity free, the decomposition into irreducible S_{n-1} -modules of V^{λ} is canonical. Each of these modules, in turn, decompose canonically into irreducible S_{n-2} -modules. Iterating this construction, we get a canonical decomposition of V^{λ} into irreducible S_1 -modules, i.e., one dimensional subspaces. Thus, there is a canonical basis of V^{λ} , determined up to scalars, and called the *Gelfand–Tsetlin* (or *GZ-*) basis of V^{λ} .

We now recall the spectral characterization of the GZ-basis [1,4,5].

Let $\mathbb{C}[S_n]$ denote the group algebra of S_n . For i = 1, 2, ..., n define $X_i = (1, i) + (2, i) + \cdots + (i - 1, i) \in \mathbb{C}[S_n]$. The X_i 's are called the Young-Jucys-Murphy elements (YJM-elements). Note that $X_1 = 0$.

Consider the Fourier transform, i.e., the algebra isomorphism

$$\mathbb{C}[S_n] \cong \bigoplus_{\lambda \in \mathcal{Y}_n} \operatorname{End}(V^\lambda), \tag{1}$$

given by

$$\pi \mapsto (V^{\lambda} \xrightarrow{\pi} V^{\lambda} : \lambda \in \mathcal{Y}_n), \ \pi \in S_n.$$

We have identified a canonical basis, the GZ-basis, in each S_n -irreducible. Let $D(V^{\lambda})$ consist of all operators on V^{λ} diagonal in the GZ-basis of V^{λ} . It is known that the

Download English Version:

https://daneshyari.com/en/article/5773179

Download Persian Version:

https://daneshyari.com/article/5773179

Daneshyari.com