The Hilton-Milner theorem for the distance-regular graphs of bilinear forms

Chao Gong, Benjian Lv*, Kaishun Wang
Sch. Math. Sci. \mathcal{B} Lab. Math. Com. Sys., Beijing Normal University, Beijing, 100875, China

A R T I C L E I N F O

Article history:

Received 9 December 2015
Accepted 11 November 2016
Available online 17 November 2016
Submitted by R. Brualdi

MSC:

05D05

Keywords:

Intersecting family
Hilton-Milner theorem
Bilinear forms graph
Covering number

Abstract

Let V be an $(n+l)$-dimensional vector space over the finite field \mathbb{F}_{q} with $l \geq n>0$, and W be a fixed l-dimensional subspace of V. Suppose \mathcal{F} is a non-trivial intersecting family of n-dimensional subspaces U of V with $U \cap W=0$. In this paper, we give the tight upper bound for the size of \mathcal{F}, and describe the structure of \mathcal{F} which reaches the upper bound. © 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let X be an n-element set and $\binom{X}{k}$ denote the family of all k-subsets of X. A family $\mathcal{F} \subseteq\binom{X}{k}$ is called intersecting if for all $F_{1}, F_{2} \in \mathcal{F}$ we have $F_{1} \cap F_{2} \neq \emptyset$. For any family $\mathcal{F} \subseteq\binom{X}{k}$, the covering number $\tau(\mathcal{F})$ is the minimum size of a set that meets all $F \in \mathcal{F}$. We say that \mathcal{F} is trivial if $\tau(\mathcal{F})=1$. Erdős, Ko and Rado [3] determined the maximum

[^0]size of an intersecting family and showed that any intersecting family with maximum size is trivial.

In 1967, Hilton and Milner [7] determined the maximum size of a non-trivial intersecting family. In 1986, Frankl and Füredi [4] gave a new proof using the shifting technique.

Theorem 1.1. ([7]) Let $\mathcal{F} \subseteq\binom{X}{k}$ be an intersecting family with $|X|=n, k \geq 2, n \geq 2 k+1$

(i) $\mathcal{F}=\left\{G \in\binom{X}{k}: x \in G, F \cap G \neq \emptyset\right\} \cup\{F\}$ for some k-subset F and $x \in X \backslash F$.
(ii) $\mathcal{F}=\left\{F \in\binom{X}{3}:|F \cap S| \geq 2\right\}$ for some 3 -subset S if $k=3$.

This theorem is usually called the Hilton-Milner theorem now. In the language of graphs, the Hilton-Milner theorem gives the upper bound on the sizes of subsets of vertices whose maximum distance is $k-1$ and covering number is at least 2 in the Johnson graph $J(n, k)$. Over the years, there have been many interesting extensions of this theorem. See [1] for vector spaces, [11] for set partitions, [12] for weak compositions and so on.

Let V be an n-dimensional vector space over the finite field \mathbb{F}_{q} and $\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ denote the family of all k-subspaces of V. For $n, k \in \mathbb{Z}^{+}$, define the Gaussian binomial coefficient by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\prod_{0 \leq i<k} \frac{q^{n-i}-1}{q^{k-i}-1}
$$

Note that the size of $\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ is $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$. From now on, we will omit the subscript q.
For two subspaces $A, B \subseteq V$, we say A intersects B if $\operatorname{dim}(A \cap B) \geq 1$. A family $\mathcal{F} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]$ is called intersecting if A intersects B for all $A, B \in \mathcal{F}$. For any $\mathcal{F} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]$, the covering number $\tau(\mathcal{F})$ is the minimum dimension of a subspace of V that intersects every element of \mathcal{F}. We say that \mathcal{F} is trivial if $\tau(\mathcal{F})=1$. In [5,6,8,9], using different techniques, the authors determined the maximum size of an intersecting family and showed that any intersecting family with maximum size is trivial. Blokhuis et al. [1] determined the maximum size of a non-trivial intersecting family.

Theorem 1.2. ([1]) Let $k \geq 3$, and either $q \geq 3$ and $n \geq 2 k+1$, or $q=2$ and $n \geq 2 k+2$. For any intersecting family $\mathcal{F} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]$ with $\tau(\mathcal{F}) \geq 2$, we have $|\mathcal{F}| \leq\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]-q^{k(k-1)}\left[\begin{array}{c}n-k-1 \\ k-1\end{array}\right]+q^{k}$. Equality holds only if
(i) $\mathcal{F}=\left\{F \in\left[\begin{array}{c}V \\ k\end{array}\right]: E \subseteq F\right.$, $\left.\operatorname{dim}(F \cap U) \geq 1\right\} \cup\left[\begin{array}{c}E+U \\ k\end{array}\right]$ for some $E \in\left[\begin{array}{c}V \\ 1\end{array}\right]$ and $U \in\left[\begin{array}{c}V \\ k\end{array}\right]$ with $E \nsubseteq U$.
(ii) $\mathcal{F}=\left\{F \in\left[\begin{array}{l}V \\ 3\end{array}\right]: \operatorname{dim}(F \cap S) \geq 2\right\}$ for some $S \in\left[\begin{array}{l}V \\ 3\end{array}\right]$ if $k=3$.

https://daneshyari.com/en/article/5773187

Download Persian Version:

https://daneshyari.com/article/5773187

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: 201531130013@mail.bnu.edu.cn (C. Gong), bjlv@bnu.edu.cn (B. Lv), wangks@bnu.edu.cn (K. Wang).

