

Contents lists available at ScienceDirect

### Linear Algebra and its Applications

www.elsevier.com/locate/laa

# The Hilton–Milner theorem for the distance-regular graphs of bilinear forms



LINEAR

lications

Chao Gong, Benjian Lv<sup>\*</sup>, Kaishun Wang

Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing, 100875, China

#### A R T I C L E I N F O

Article history: Received 9 December 2015 Accepted 11 November 2016 Available online 17 November 2016 Submitted by R. Brualdi

MSC: 05D05

Keywords: Intersecting family Hilton–Milner theorem Bilinear forms graph Covering number

#### ABSTRACT

Let V be an (n + l)-dimensional vector space over the finite field  $\mathbb{F}_q$  with  $l \ge n > 0$ , and W be a fixed *l*-dimensional subspace of V. Suppose  $\mathcal{F}$  is a non-trivial intersecting family of *n*-dimensional subspaces U of V with  $U \cap W = 0$ . In this paper, we give the tight upper bound for the size of  $\mathcal{F}$ , and describe the structure of  $\mathcal{F}$  which reaches the upper bound.

© 2016 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let X be an n-element set and  $\binom{X}{k}$  denote the family of all k-subsets of X. A family  $\mathcal{F} \subseteq \binom{X}{k}$  is called *intersecting* if for all  $F_1, F_2 \in \mathcal{F}$  we have  $F_1 \cap F_2 \neq \emptyset$ . For any family  $\mathcal{F} \subseteq \binom{X}{k}$ , the *covering number*  $\tau(\mathcal{F})$  is the minimum size of a set that meets all  $F \in \mathcal{F}$ . We say that  $\mathcal{F}$  is *trivial* if  $\tau(\mathcal{F}) = 1$ . Erdős, Ko and Rado [3] determined the maximum

\* Corresponding author.

*E-mail addresses:* 201531130013@mail.bnu.edu.cn (C. Gong), bjlv@bnu.edu.cn (B. Lv), wangks@bnu.edu.cn (K. Wang).

size of an intersecting family and showed that any intersecting family with maximum size is trivial.

In 1967, Hilton and Milner [7] determined the maximum size of a non-trivial intersecting family. In 1986, Frankl and Füredi [4] gave a new proof using the shifting technique.

**Theorem 1.1.** ([7]) Let  $\mathcal{F} \subseteq {X \choose k}$  be an intersecting family with  $|X| = n, k \ge 2, n \ge 2k+1$ and  $\tau(\mathcal{F}) \ge 2$ . Then  $|\mathcal{F}| \le {n-1 \choose k-1} - {n-k-1 \choose k-1} + 1$ . Equality holds only if

(i)  $\mathcal{F} = \{G \in {X \choose k} : x \in G, F \cap G \neq \emptyset\} \cup \{F\}$  for some k-subset F and  $x \in X \setminus F$ . (ii)  $\mathcal{F} = \{F \in {X \choose 3} : |F \cap S| \ge 2\}$  for some 3-subset S if k = 3.

This theorem is usually called the Hilton-Milner theorem now. In the language of graphs, the Hilton-Milner theorem gives the upper bound on the sizes of subsets of vertices whose maximum distance is k - 1 and covering number is at least 2 in the Johnson graph J(n,k). Over the years, there have been many interesting extensions of this theorem. See [1] for vector spaces, [11] for set partitions, [12] for weak compositions and so on.

Let V be an n-dimensional vector space over the finite field  $\mathbb{F}_q$  and  $\begin{bmatrix} V \\ k \end{bmatrix}_q$  denote the family of all k-subspaces of V. For  $n, k \in \mathbb{Z}^+$ , define the Gaussian binomial coefficient by

$$\begin{bmatrix} n \\ k \end{bmatrix}_q := \prod_{0 \le i < k} \frac{q^{n-i} - 1}{q^{k-i} - 1}.$$

Note that the size of  $\begin{bmatrix} V \\ k \end{bmatrix}_q$  is  $\begin{bmatrix} n \\ k \end{bmatrix}_q$ . From now on, we will omit the subscript q.

For two subspaces  $A, B \subseteq V$ , we say A intersects B if  $\dim(A \cap B) \ge 1$ . A family  $\mathcal{F} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$  is called intersecting if A intersects B for all  $A, B \in \mathcal{F}$ . For any  $\mathcal{F} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$ , the covering number  $\tau(\mathcal{F})$  is the minimum dimension of a subspace of V that intersects every element of  $\mathcal{F}$ . We say that  $\mathcal{F}$  is trivial if  $\tau(\mathcal{F}) = 1$ . In [5,6,8,9], using different techniques, the authors determined the maximum size of an intersecting family and showed that any intersecting family with maximum size is trivial. Blokhuis et al. [1] determined the maximum size of a non-trivial intersecting family.

**Theorem 1.2.** ([1]) Let  $k \geq 3$ , and either  $q \geq 3$  and  $n \geq 2k + 1$ , or q = 2and  $n \geq 2k + 2$ . For any intersecting family  $\mathcal{F} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$  with  $\tau(\mathcal{F}) \geq 2$ , we have  $|\mathcal{F}| \leq \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} - q^{k(k-1)} \begin{bmatrix} n-k-1 \\ k-1 \end{bmatrix} + q^k$ . Equality holds only if

- (i)  $\mathcal{F} = \{F \in \begin{bmatrix} V \\ k \end{bmatrix} : E \subseteq F, \dim(F \cap U) \ge 1\} \cup \begin{bmatrix} E+U \\ k \end{bmatrix}$  for some  $E \in \begin{bmatrix} V \\ 1 \end{bmatrix}$  and  $U \in \begin{bmatrix} V \\ k \end{bmatrix}$  with  $E \nsubseteq U$ .
- (ii)  $\mathcal{F} = \{F \in \begin{bmatrix} V \\ 3 \end{bmatrix} : \dim(F \cap S) \ge 2\}$  for some  $S \in \begin{bmatrix} V \\ 3 \end{bmatrix}$  if k = 3.

Download English Version:

## https://daneshyari.com/en/article/5773187

Download Persian Version:

https://daneshyari.com/article/5773187

Daneshyari.com