

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Continuity of seminorms on finite-dimensional vector spaces

Moshe Goldberg

Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel

ARTICLE INFO

Article history: Received 7 November 2016 Accepted 7 November 2016 Available online 15 November 2016 Submitted by T.J. Laffey

MSC: 15A03

Keywords:
Finite-dimensional vector spaces
Norms
Subnorms
Seminorms
Continuity

ABSTRACT

The main purpose of this note is to establish the continuity of seminorms on finite-dimensional vector spaces over the real or complex numbers.

 $\ensuremath{{\mathbb C}}$ 2016 Elsevier Inc. All rights reserved.

Throughout this note let **V** be a finite-dimensional vector space over a field \mathbb{F} , either \mathbb{R} or \mathbb{C} . Let N be a *norm* on **V**, so that for all $a, b \in \mathbf{V}$ and $\alpha \in \mathbb{F}$,

$$N(a) > 0, \quad a \neq 0,$$

$$N(\alpha a) = |\alpha| N(a),$$

$$N(a+b) \le N(a) + N(b).$$

E-mail address: mg@technion.ac.il.

Since V is finite-dimensional, all norms on V are equivalent, inducing on V a unique topology. In particular, it follows that all norms on V are continuous with respect to this topology.

The notion of norm can be relaxed in two familiar ways:

(a) We say that a real-valued function $f: \mathbf{V} \to \mathbb{R}$ is a *subnorm* on \mathbf{V} if for all $a \in \mathbf{V}$ and $\alpha \in \mathbb{F}$,

$$f(a) > 0, \quad a \neq 0,$$

 $f(\alpha a) = |\alpha| f(a).$

(b) We say that a real-valued function $S: \mathbf{V} \to \mathbb{R}$ is a *seminorm* on \mathbf{V} if for all $a, b \in \mathbf{V}$ and $\alpha \in \mathbb{F}$,

$$S(a) \ge 0,$$

$$S(\alpha a) = |\alpha|S(a),$$

$$S(a+b) \le S(a) + S(b).$$

It follows that a subnorm f is a norm on \mathbf{V} if and only if f is *subadditive*. Similarly, a seminorm S is a norm on \mathbf{V} if and only if S is *positive-definite*.

If dim V = 1, then fixing a nonzero element $a_0 \in V$, we may write

$$\mathbf{V} = \{ \alpha a_0 : \alpha \in \mathbb{F} \}.$$

So every subnorm f on \mathbf{V} must be of the form

$$f(a) = \gamma |\alpha|, \quad a = \alpha a_0 \in \mathbf{V},$$

where γ , the value of f at a_0 , is a positive constant and, consequently, f is continuous on \mathbf{V} .

If, however, dim $\mathbf{V} \geq 2$, then contrary to norms, subnorms on \mathbf{V} may fail to be continuous. For example, [1, Section 3], let f be a continuous subnorm on \mathbf{V} . Fix an element $a_0 \neq 0$ in \mathbf{V} , and let

$$\mathbf{W} = \{\alpha a_0 : \alpha \in \mathbb{F}\}\$$

be the one-dimensional linear subspace of **V** generated by a_0 . Select a real number κ , $\kappa > 1$, and set

$$g_{\kappa} = \begin{cases} \kappa f(x), & a \in \mathbf{W}, \\ f(x), & a \in \mathbf{V} \setminus \mathbf{W}. \end{cases}$$

Download English Version:

https://daneshyari.com/en/article/5773189

Download Persian Version:

https://daneshyari.com/article/5773189

<u>Daneshyari.com</u>