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Abstract

Two graphs are cospectral if their spectra coincide. The set of all graphs that are
cospectral to a given graph, including the graph by itself, is the cospectral equivalence
class of the graph. We say that a graph is determined by its spectrum, or that it is
a DS-graph, if it is a unique graph having that spectrum. Given n reals belonging to
the interval [−2, 2], we want to find all graphs on n vertices having these reals as the
eigenvalues of the adjacency matrix. Such graphs are called Smith graphs. Our search is
based on solving a system of linear Diophantine equations. We present several results on
spectral characterizations of Smith graphs.

Key words: Adjacency spectrum, cospectral graphs, DS-graph, cospectral equivalence
class, Diophantine equation.

2010 Mathematics Subject Classification: 05C50

1 Introduction

In this paper, we consider only finite undirected simple graphs, i.e. graphs without loops or
multiple edges. Let G be a simple graph on n vertices (or a graph of order n), and with
the adjacency matrix A. The characteristic polynomial PG(x) = det(xI − A) of G is the
characteristic polynomial of its adjacency matrix A. The eigenvalues of A, in non-increasing
order, are denoted by λ1(G), . . . , λn(G). They are called the eigenvalues of G and they form
the spectrum of G. The multiplicity k of the eigenvalue λi in the spectrum of G will be
denoted by [λi]

k. Since A is real and symmetric, the spectrum of G consists of reals. In
particular, λ1(G), as the largest eigenvalue of G, is called the spectral radius (or index ) of G.

The spectrum of G (as a multi-set or family of reals) will be denoted by Ĝ. The disjoint
union of graphs G1 and G2 will be denoted by G1 +G2, while for the union of their spectra
(i.e. the spectrum of G1+G2) we will use the following mark Ĝ1+Ĝ2. In the similar manner,
kG (kĜ) stands for the union of k copies of G (the spectrum of kG). In this sense, we shall
also use linear combinations of graphs and of their spectra.
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