

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On bipartite distance-regular graphs with exactly two irreducible T-modules with endpoint two

LINEAR

Applications

Mark S. MacLean^a, Štefko Miklavič^{b,*,1}

 ^a Mathematics Department, Seattle University, 901 Twelfth Avenue, Seattle, WA 98122-1090, USA
^b University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia

ARTICLE INFO

Article history: Received 9 November 2016 Accepted 14 November 2016 Available online 18 November 2016 Submitted by R. Brualdi

MSC: 05E30

Keywords: Bipartite distance-regular graphs Terwilliger algebra Irreducible modules

ABSTRACT

Let Γ denote a bipartite distance-regular graph with diameter $D \ge 4$ and valency $k \ge 3$. Let X denote the vertex set of Γ , and let A denote the adjacency matrix of Γ . For $x \in X$ let T = T(x) denote the subalgebra of $Mat_X(\mathbb{C})$ generated by A, $E_0^*, E_1^*, \ldots, E_D^*$, where for $0 \leq i \leq D$, E_i^* represents the projection onto the *i*th subconstituent of Γ with respect to x. We refer to T as the Terwilliger algebra of Γ with respect to x. An irreducible T-module W is said to be thin whenever dim $E_i^*W \leq 1$ for $0 \leq i \leq D$. By the *endpoint* of W we mean min $\{i | E_i^* W \neq 0\}$. For $0 \leq i \leq D$, let $\Gamma_i(z)$ denote the set of vertices in X that are distance *i* from vertex z. Define a parameter Δ_2 in terms of the intersection numbers by $\Delta_2 = (k-2)(c_3-1) - (c_2-1)p_{22}^2$. In this paper we prove the following are equivalent: (i) $\Delta_2 > 0$ and for $2 \le i \le D-2$ there exist complex scalars α_i, β_i with the following property: for all $x, y, z \in X$ such that $\partial(x, y) = 2, \partial(x, z) = i, \partial(y, z) = i$ we have $\alpha_i + \beta_i |\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)| = |\Gamma_{i-1}(x) \cap \Gamma_{i-1}(y) \cap \Gamma_{i-1}(y)|$ $\Gamma_1(z)$; (ii) For all $x \in X$ there exist up to isomorphism exactly two irreducible modules for the Terwilliger algebra T(x) with endpoint two, and these modules are thin.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: macleanm@seattleu.edu (M.S. MacLean), stefko.miklavic@upr.si (Š. Miklavič).

1. Introduction

In this paper we obtain a combinatorial characterization of bipartite distance-regular graphs with exactly two irreducible modules of the Terwilliger algebra of endpoint 2, both of which are thin (see Section 2 for formal definitions). Our combinatorial characterization is closely related to the 2-homogeneous property of Curtin [3] and Nomura [14].

Throughout this introduction let Γ denote a bipartite distance-regular graph with diameter $D \geq 4$ and valency $k \geq 3$. Let X denote the vertex set of Γ . For $x \in X$, let T = T(x) denote the Terwilliger algebra of Γ with respect to x. It is known that there exists a unique irreducible T-module with endpoint 0, and this module is thin [8, Proposition 8.4]. Moreover, Curtin showed that up to isomorphism Γ has exactly one irreducible T-module with endpoint 1, and this module is thin [4, Corollary 7.7].

We now discuss the irreducible *T*-modules of endpoint 2. For $0 \le i \le D$, let $\Gamma_i(z)$ denote the set of vertices in *X* that are distance *i* from vertex *z*. In [7, Theorem 3.11], Curtin proved that the following are equivalent: (i) For all $i (2 \le i \le D - 2)$ and for all $x, y, z \in X$ with $\partial(x, y) = 2, \partial(x, z) = i, \partial(y, z) = i$, the number $|\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)|$ is independent of x, y, z; (ii) For all $x \in X$ there exists a unique irreducible *T*-module for the Terwilliger algebra T(x) with endpoint 2, and this module is thin. When these equivalent conditions hold, Γ is said to be *almost 2-homogeneous*.

Now define a parameter Δ_2 in terms of the intersection numbers by $\Delta_2 = (k-2)(c_3 - 1) - (c_2 - 1)p_{22}^2$. In this paper we prove the following are equivalent: (i) $\Delta_2 > 0$ and for $2 \leq i \leq D-2$ there exist complex scalars α_i, β_i with the following property: for all $x, y, z \in X$ such that $\partial(x, y) = 2, \partial(x, z) = i, \partial(y, z) = i$ we have $\alpha_i + \beta_i |\Gamma_1(x) \cap \Gamma_1(y) \cap \Gamma_{i-1}(z)| = |\Gamma_{i-1}(x) \cap \Gamma_{i-1}(y) \cap \Gamma_1(z)|$; (ii) For all $x \in X$ there exist up to isomorphism exactly two irreducible modules for the Terwilliger algebra T(x) with endpoint two, and these modules are thin. We also compute α_i, β_i in terms of the intersection numbers of Γ .

We remark that this paper is part of a continuing effort to understand and classify the bipartite distance-regular graphs with at most two irreducible modules of the Terwilliger algebra with endpoint 2, both of which are thin. Please see [5–7,10–12] for more work from this ongoing project.

2. Preliminaries

In this section we review some definitions and basic results concerning distance-regular graphs. See the book of Brouwer, Cohen and Neumaier [2] for more background information.

Let \mathbb{C} denote the complex number field and let X denote a nonempty finite set. Let $Mat_X(\mathbb{C})$ denote the \mathbb{C} -algebra consisting of all matrices whose rows and columns are

 $^{^1\,}$ Supported in part by ARRS—Javna Agencija za Raziskovalno Dejavnost RS, program no. P1-0285.

Download English Version:

https://daneshyari.com/en/article/5773195

Download Persian Version:

https://daneshyari.com/article/5773195

Daneshyari.com