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It was recently observed in [10] that the singular values of 
the off-diagonal blocks of the matrix sequences generated 
by the Cyclic Reduction algorithm decay exponentially. This 
property was used to solve, with a higher efficiency, certain 
quadratic matrix equations encountered in the analysis of 
queuing models. In this paper, we provide a theoretical bound 
to the basis of this exponential decay together with a tool 
for its estimation based on a rational interpolation problem. 
Numerical experiments show that the bound is often accurate 
in practice. Applications to solving n × n block tridiagonal 
block Toeplitz systems with n × n quasiseparable blocks 
and certain generalized Sylvester equations in O(n2 logn)
arithmetic operations are shown.
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1. Introduction

Cyclic reduction, CR for short, is an algorithm originally introduced by G.H. Golub 
and R.W. Hockney in [18] for the solution of certain block tridiagonal linear systems 
coming from the finite difference discretization of elliptic PDEs. It has been later gen-
eralized and extended to other contexts, like for instance to the solution of polynomial 
matrix equations, and has been proven to be a successful method for solving a large 
class of queuing problems and infinite Markov Chains. We refer the reader to the books 
[9,8] and to the survey paper [11] for more details and for the many references to the 
literature.

Given three m ×m matrices A−1, A0, A1, and a positive integer n consider the block 
tridiagonal block Toeplitz matrix An = tridn(A−1, A0, A1) having block-size n where A0
is on the main diagonal while A−1 is in the lower diagonal and A1 in the upper diagonal. 
For a vector b ∈ R

mn, consider the system Anx = b. Roughly speaking, CR generates 
three sequences of m ×m matrices A(h)

−1 , A(h)
0 and A(h)

1 , for h = 0, 1, . . . , with A(0)
i = Ai, 

i = −1, 0, 1, and a sequence of systems Anh
x(h) = b(h), Anh

= tridnh
(A(h)

−1 , A
(h)
0 , A(h)

1 ), 
where nh = �nh−1/2� and x(h) is a subvector of x. This way, solving a block tridiagonal 
block-Toeplitz system of block size n is reduced to solving a block tridiagonal block 
Toeplitz system of size �n/2�. The computation of A(h)

i given A(h−1)
i , for i = −1, 0, 1, 

amounts to perform one matrix inversion and few matrix multiplications for the overall 
cost per step of O(m3) arithmetic operations (ops).

Under certain assumptions, customarily verified in many applications, the sequences
A

(h)
1 and/or A(h)

−1 converge doubly exponentially to zero. This makes CR a powerful 
tool for solving large or even infinite systems, as well as matrix equations of the kind 
A−1 +A0X +A1X

2 = 0, typically encountered in the analysis of queuing problems [22], 
where the unknown is the m ×m matrix X and a solution of spectral radius at most 1
is sought.

In short, the three sequences A(h)
i , i = −1, 0, 1, which are related to the Schur 

complements of certain principal submatrices of An, are given by the following ma-
trix recurrences where we report also two additional auxiliary sequences, namely Ã(h)

and Â(h), which have a role in the solution of quadratic matrix equations and of linear 
systems when n is not of the kind 2q − 1:

A
(h+1)
0 = A

(h)
0 −A

(h)
1 S(h)A

(h)
−1 −A

(h)
−1S

(h)A
(h)
1 , S(h) = (A(h)

0 )−1

A
(h+1)
1 = −A

(h)
1 S(h)A

(h)
1 , A

(h+1)
−1 = −A

(h)
−1S

(h)A
(h)
−1 , h = 0, 1, . . .

Â(h+1) = Â(h) −A
(h)
1 S(h)A

(h)
−1 , Ã(h+1) = Ã(h) −A−1S

(h)A
(h)
1

(1)

with A(0)
0 = Ã(0) = Â(0) = A0, A(0)

1 = A1, A(0)
−1 = A−1.

Here we assume that all the matrices A(h)
0 generated by the recursion are invertible 

so that CR can be carried out with no breakdown. This assumption is generally satisfied 
in the applications.
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