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Abstract In this paper, a graph with the maximum least signless Laplacian eigenvalue

among all connected unicyclic graphs with fixed order is determined.
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1 Introduction

Let G = (V,E) be a simple connected graph with vertex set V = {v1, v2, · · · , vn} and edge set E. Its

adjacency matrix A(G) = (aij) is defined as n × n matrix (aij), where aij = 1 if vi is adjacent to vj ; and

aij = 0, otherwise. Denote by d(vi) or dG(vi) the degree of the vertex vi. The matrices L(G) = D(G)−A(G)

and Q(G) = D(G) + A(G) are called the Laplacian matrix and the signless Laplacian matrix of graph G,

respectively, where D(G) = diag(d(v1), d(v2), · · · , d(vn)) denotes the diagonal matrix of vertex degrees of

G. It is easy to see that L(G) is a positive semidefinite symmetric matrix with the smallest eigenvalue 0

and the corresponding eigenvector is the column vector of all ones. Fiedler [10] showed that the second

smallest eigenvalue of L(G) is 0 if and only if G is disconnected. Thus the second smallest eigenvalue of

L(G) is popularly known as the algebraic connectivity of G.

It is well known that A(G) is a real symmetric matrix and Q(G) is a positive semidefinite symmetric

matrix. The eigenvalues of Q(G) can be ordered as

q1(G) ≥ q2(G) ≥ · · · ≥ qn(G) ≥ 0,

respectively. The smallest eigenvalue qn(G) of Q(G) is called the least signless Laplacian eigenvalue of the

graph G, denoted by q(G). It is a well known fact that for a connected graph G, q(G) = 0 if and only if G

is bipartite [3]. A pendant vertex is a vertex with degree one. If v is a pendant vertex and v is adjacent to

u, then v is called the pendant vertex of u.
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