

Contents lists available at ScienceDirect

### Linear Algebra and its Applications

www.elsevier.com/locate/laa

### A note on the positive semidefiniteness of $A_{\alpha}(G)$



LINEAR

lications

Vladimir Nikiforov<sup>a,\*</sup>, Oscar Rojo<sup>b</sup>

 <sup>a</sup> Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
 <sup>b</sup> Department of Mathematics, Universidad Católica del Norte, Antofagasta, Chile

#### A R T I C L E I N F O

Article history: Received 2 October 2016 Accepted 30 December 2016 Available online 6 January 2017 Submitted by R. Brualdi

MSC: 05C50 15A48

Keywords: Convex combination of matrices Signless Laplacian Adjacency matrix Bipartite graph Positive semidefinite matrix Chromatic number

#### ABSTRACT

Let G be a graph with adjacency matrix A(G) and let D(G) be the diagonal matrix of the degrees of G. For every real  $\alpha \in [0, 1]$ , write  $A_{\alpha}(G)$  for the matrix

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G).$$

Let  $\alpha_0(G)$  be the smallest  $\alpha$  for which  $A_{\alpha}(G)$  is positive semidefinite. It is known that  $\alpha_0(G) \leq 1/2$ . The main results of this paper are:

(1) if G is d-regular then

$$_{0} = \frac{-\lambda_{\min}(A(G))}{d - \lambda_{\min}(A(G))},$$

where  $\lambda_{\min}(A(G))$  is the smallest eigenvalue of A(G);

- (2) G contains a bipartite component if and only if  $\alpha_0(G) = 1/2$ ;
- (3) if G is r-colorable, then  $\alpha_0(G) \ge 1/r$ .

 $\alpha$ 

© 2017 Elsevier Inc. All rights reserved.

\* Corresponding author. E-mail addresses: vnikifrv@memphis.edu (V. Nikiforov), orojo@ucn.cl (O. Rojo).

http://dx.doi.org/10.1016/j.laa.2016.12.042 0024-3795/© 2017 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let G be a graph with adjacency matrix A(G), and let D(G) be the diagonal matrix of the degrees of G. In [8], it was proposed to study the family of matrices  $A_{\alpha}(G)$  defined for any real  $\alpha \in [0, 1]$  as

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G).$$

Since  $A_0(G) = A(G)$  and  $2A_{1/2}(G) = Q(G)$ , where Q(G) is the signless Laplacian of G, the matrices  $A_\alpha$  can help to study subtle relations between A(G) and Q(G).

A major distinction between Q(G) and A(G) is the fact that Q(G) is positive semidefinite, whereas A(G) is not, except if G is empty. Thus, given G, it is natural to ask for which  $\alpha \in [0,1]$  is  $A_{\alpha}(G)$  positive semidefinite. To further discuss this question we need the following notation: given a square matrix M with real eigenvalues, we write  $\lambda(M)$ and  $\lambda_{\min}(M)$  for the largest and the smallest eigenvalues of M.

In [8], some general results on the matrices  $A_{\alpha}(G)$  have been proved. In particular, if  $1 \ge \alpha > \beta \ge 0$ , observe that

$$A_{\alpha}(G) - A_{\beta}(G) = (\alpha - \beta) L(G),$$

where L(G) = D(G) - A(G) is the Laplacian of G. Hence, using Weyl's inequalities (see Theorem W below), one can get the following propositions:

**Proposition 1.** Let  $1 \ge \alpha > \beta \ge 0$ . If G is a graph of order n with  $A_{\alpha}(G) = A_{\alpha}$ ,  $A_{\beta}(G) = A_{\beta}$ , and L(G) = L, then

$$(\alpha - \beta) \lambda(L) > \lambda_{\min}(A_{\alpha}) - \lambda_{\min}(A_{\beta}) \ge 0.$$
(1)

If G is connected, then the right inequality in (1) is strict.

**Proposition 2.** If  $\alpha \ge 1/2$ , then  $A_{\alpha}(G)$  is positive semidefinite. If  $\alpha > 1/2$  and G has no isolated vertices, then  $A_{\alpha}(G)$  is positive definite.

In particular, inequalities (1) imply that for every G, the function  $f_G(\alpha) := \lambda_{\min}(A_{\alpha}(G))$  is continuous and nondecreasing in  $\alpha$ . Thus, there is a smallest value  $\alpha \in [0, 1]$  such that  $\lambda_{\min}(A_{\alpha}(G)) = 0$ . Denote this value by  $\alpha_0(G)$  and note that  $A_{\alpha}(G)$  is positive semidefinite if and only if  $\alpha_0(G) \le \alpha \le 1$ .

Having  $\alpha_0(G)$  in hand, we restate a problem that has been raised in [8]:

**Problem 3.** Given a graph G, find  $\alpha_0(G)$ .

This problem seems difficult in general, but is worth studying, because  $\alpha_0(G)$  relates to various structural parameters of G. In this paper, we find  $\alpha_0(G)$  if G is regular or

Download English Version:

# https://daneshyari.com/en/article/5773213

Download Persian Version:

## https://daneshyari.com/article/5773213

Daneshyari.com