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Free nilpotent and nilpotent quadratic Lie algebras

P. Benito, D. de-la-Concepción, J. Laliena

Abstract

In this paper we introduce an equivalence between the category of the t-
nilpotent quadratic Lie algebras with d generators and the category of some
symmetric invariant bilinear forms over the t-nilpotent free Lie algebra with
d generators. Taking into account this equivalence, t-nilpotent quadratic Lie
algebras with d generators are classified (up to isometric isomorphisms, and
over any field of characteristic zero), in the following cases: d = 2 and t ≤ 5,
d = 3 and t ≤ 3.
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1 Introduction

Let n be a Lie algebra over an arbitrary field K of characteristic zero. The Lie
algebra n is said to be nilpotent if nt+1 = 0, where nt is defined inductively as
n1 = n, ni = [ni−1, n]. In this case we call t the index of nilpotency of n and we say
that n is t-nilpotent or also t-step nilpotent (nt �= 0). The chain of ideals of n:

n ⊇ n2 ⊇ · · · ⊇ nt ⊇ nt+1 ⊇ . . . (1)

is the well-known lower central series of n. Hence, if n is t-nilpotent the lower central
series finishes after t+ 1 steps.

The type of a nilpotent Lie algebra n is defined as the codimension of n2 in n.
Following M. A. Gauger [5, Section 1, Corollary 1.3], a set m = {x1, x2, . . . , xd}
generates n if and only if {x1 + n2, . . . xd + n2} is a basis of n/n2. So, the type of a
Lie algebra is the cardinal of every K-linearly independent set, m = {x1, x2, . . . xd},
such that t, the subspace generated by m, satisfies t⊕ n2 = n. The above conditions
imply that m = {x1, . . . , xd} generates n as K-algebra and therefore, we can see the
elements xi ∈ m as a minimal set of generators of n.
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