Inequalities related to partial transpose and partial trace

Daeshik Choi

Southern Illinois University, Edwardsville, Dept. of Mathematics and Statistics, Box 1653, Edwardsville, IL 62026, United States

A R T I C L E I N F O

Article history:

Received 1 November 2016
Accepted 17 November 2016
Available online 23 November 2016
Submitted by R. Brualdi

MSC:

47B65
15A42
15A45

Keywords:
Partial transpose
Partial trace
Positive semidefinite
Block matrix

A B S T R A C T

In this paper, we present inequalities related to partial transpose and partial trace for positive semidefinite matrices. Some interesting results involving traces and eigenvalues are also included.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper, we use the following standard notation:

- $\mathbb{M}_{n \times k}$ is the set of $n \times k$ complex matrices; if $n=k$, we use \mathbb{M}_{n} for $\mathbb{M}_{n \times n}$ and if $k=1$, we use \mathbb{C}^{n} for $\mathbb{M}_{n \times 1}$.
- $\mathbb{M}_{n}\left(\mathbb{M}_{k}\right)$ is the set of $n \times n$ block matrices with each block in \mathbb{M}_{k}.

[^0]- I_{n} is the $n \times n$ identity matrix.
- $A \circ B$ is the Hadamard product of A, B.
- $A \otimes B$ is the Kronecker product of A, B; that is, if $A=\left[a_{i j}\right] \in \mathbb{M}_{n}$ and $B \in \mathbb{M}_{k}$, then $A \otimes B \in \mathbb{M}_{n}\left(\mathbb{M}_{k}\right)$ whose (i, j) block is $a_{i j} B$.
- $\|x\|$ denotes the 2-norm of $x \in \mathbb{C}^{n}$; that is, $\|x\|=\sqrt{x^{*} x}$.

Given $A=\left[A_{i, j}\right]_{i, j=1}^{n} \in \mathbb{M}_{n}\left(\mathbb{M}_{k}\right)$, we define the partial transpose of A by

$$
A^{\tau}=\left[A_{j, i}\right]_{i, j=1}^{n} .
$$

Note that $A \geq 0$ does not necessarily imply $A^{\tau} \geq 0$. If both A and A^{τ} are positive semidefinite, then A is said to be positive partial transpose (PPT for short). We also define two partial traces $\operatorname{tr}_{1} A$ and $\operatorname{tr}_{2} A$ of $A=\left[A_{i, j}\right]_{i, j=1}^{n} \in \mathbb{M}_{n}\left(\mathbb{M}_{k}\right)$ by

$$
\begin{aligned}
\operatorname{tr}_{1} A & =\sum_{i=1}^{n} A_{i, i} \\
\operatorname{tr}_{2} A & =\left[\operatorname{tr} A_{i, j}\right]_{i, j=1}^{n}
\end{aligned}
$$

where $\operatorname{tr} X$ denotes the trace of X; see [5] for more details related to partial traces.
It is shown in $[1,4]$ that for any positive semidefinite $H \in \mathbb{M}_{n}\left(\mathbb{M}_{k}\right)$, we have

$$
\begin{equation*}
I_{n} \otimes \operatorname{tr}_{1} H+\operatorname{tr}_{2} H \otimes I_{k}-H \leq(\operatorname{tr} H) I_{n k} \tag{1.1}
\end{equation*}
$$

Generally, $I_{n} \otimes \operatorname{tr}_{1} H+\operatorname{tr}_{2} H \otimes I_{k} \geq H$ does not hold. In this paper, we show

$$
I_{n} \otimes \operatorname{tr}_{1} H+\operatorname{tr}_{2}\left(H^{\tau}\right) \otimes I_{k} \geq H^{\tau}
$$

for $H \in \mathbb{M}_{n}\left(\mathbb{M}_{k}\right)$ with $H \geq 0$ (in Theorem 2) and

$$
I_{2} \otimes \operatorname{tr}_{1} H+\operatorname{tr}_{2}(H) \otimes I_{k} \geq H
$$

for $H \in \mathbb{M}_{2}\left(\mathbb{M}_{k}\right)$ with $H \geq 0$ (in Theorem 4). Moreover, some interesting inequalities involving the trace and the minimum and maximum eigenvalues of a positive semidefinite matrix will be presented.

2. Results and proofs

Lemma 1. Let $A, B \in \mathbb{M}_{n}$. If $A, B \geq 0$, then $\sum(A \circ B) \geq 0$, where $\sum(X)$ denotes the sum of all entries of X.

Proof. By the Schur product theorem, we have $A \circ B \geq 0$. Since $\sum(X)=u^{*} X u$, where $u \in \mathbb{C}^{n}$ is the vector with all entries equal to one, $\sum(A \circ B) \geq 0$ follows from $A \circ B \geq 0$.

https://daneshyari.com/en/article/5773228

Download Persian Version:
https://daneshyari.com/article/5773228

Daneshyari.com

[^0]: E-mail address: dchoi@siue.edu.

