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In this paper, we present inequalities related to partial 
transpose and partial trace for positive semidefinite matrices. 
Some interesting results involving traces and eigenvalues are 
also included.
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1. Introduction

Throughout the paper, we use the following standard notation:

• Mn×k is the set of n × k complex matrices; if n = k, we use Mn for Mn×n and if 
k = 1, we use Cn for Mn×1.

• Mn(Mk) is the set of n × n block matrices with each block in Mk.
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• In is the n × n identity matrix.
• A ◦B is the Hadamard product of A, B.
• A ⊗ B is the Kronecker product of A, B; that is, if A = [aij ] ∈ Mn and B ∈ Mk, 

then A ⊗B ∈ Mn(Mk) whose (i, j) block is aijB.
• ||x|| denotes the 2-norm of x ∈ C

n; that is, ||x|| =
√
x∗x.

Given A = [Ai,j ]ni,j=1 ∈ Mn(Mk), we define the partial transpose of A by

Aτ = [Aj,i ]ni,j=1 .

Note that A ≥ 0 does not necessarily imply Aτ ≥ 0. If both A and Aτ are positive 
semidefinite, then A is said to be positive partial transpose (PPT for short). We also 
define two partial traces tr1A and tr2A of A = [Ai,j ]ni,j=1 ∈ Mn(Mk) by

tr1A =
n∑

i=1
Ai,i,

tr2A = [trAi,j ]ni,j=1 ,

where trX denotes the trace of X; see [5] for more details related to partial traces.
It is shown in [1,4] that for any positive semidefinite H ∈ Mn(Mk), we have

In ⊗ tr1H + tr2H ⊗ Ik −H ≤ (trH)Ink. (1.1)

Generally, In ⊗ tr1H + tr2H ⊗ Ik ≥ H does not hold. In this paper, we show

In ⊗ tr1H + tr2(Hτ ) ⊗ Ik ≥ Hτ

for H ∈ Mn(Mk) with H ≥ 0 (in Theorem 2) and

I2 ⊗ tr1H + tr2(H) ⊗ Ik ≥ H

for H ∈ M2(Mk) with H ≥ 0 (in Theorem 4). Moreover, some interesting inequalities 
involving the trace and the minimum and maximum eigenvalues of a positive semidefinite 
matrix will be presented.

2. Results and proofs

Lemma 1. Let A, B ∈ Mn. If A, B ≥ 0, then 
∑

(A ◦ B) ≥ 0, where 
∑

(X) denotes the 
sum of all entries of X.

Proof. By the Schur product theorem, we have A ◦B ≥ 0. Since 
∑

(X) = u∗Xu, where 
u ∈ C

n is the vector with all entries equal to one, 
∑

(A ◦B) ≥ 0 follows from A ◦B ≥ 0. �
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