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For an Hermitian matrix A whose graph is a tree T , we study 
the number of eigenvalues of A whose multiplicity decreases 
when a particular vertex is deleted from T . Explicit results 
are given when that number of eigenvalues is less than 4 and 
an inductive result thereafter. The work is based, in part, on 
classical results about multiplicities, but also on some new 
facts, including a useful identity. This allows us to give strong 
bounds based on simple facts about the location of the vertex 
in the tree. Some facts about matrices whose graphs are not 
trees are included, and the classical diameter bound about the 
number of distinct eigenvalues for a tree follows.
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1. Introduction

Given an undirected graph G on n vertices, H(G) denotes all the complex Hermitian 
matrices with graph G; no restriction is placed upon the diagonal entries. Let mA(λ)
denote the multiplicity of λ as an eigenvalue of A. Vertex i of G is called a Parter (resp. 
neutral, downer) vertex for λ in A ∈ H(G) if mA(i)(λ) = mA(λ) + 1 (resp. mA(λ), 
mA(λ) − 1). Here, as usual, A(i) is the (n− 1)-by-(n− 1) principal submatrix of A
resulting from deletion of row and column i (vertex i from G). Because of the interlacing 
inequalities, these are the only 3 possibilities. Here, our purpose is to focus on a particular 
vertex and ask for how many eigenvalues it is a downer. In the process, some striking 
facts about paths and downer vertices in trees, which are the main focus, are obtained. 
These allow very different proofs of key classical facts in the subject. Note that, using 
Geršgorin’s theorem, it is easy to construct A ∈ H(T ), T a tree, with distinct eigenvalues 
and all vertices downers. But we are interested in lower bounds.

See [2] for basic matrix theoretic background assumed herein. See also references [5–7]
for examples of how the Parter–Wiener, etc. technology has been used in ways we employ 
it here. See [3,8] for basic theory about maximum multiplicity and the minimum number 
of distinct eigenvalues that underlay our discussion.

Throughout, T will denote a tree, and when we delete vertex i, we obtain the induced 
subgraph T (i). By d(T ) we mean the diameter of T , measured in vertices on a path that 
attains the diameter. As usual, we also refer to such a path as a diameter. When we 
wish to discuss matrices in H(T ), we may do so by describing a particular assignment of 
some eigenvalues to paths or vertices of T . We often move freely between matrices and 
graphs, for convenience and without danger of confusion.

We denote by c(A) the number of distinct eigenvalues of A ∈ H(G) and by c(G) =
min

A∈H(G)
c(A), the minimum number of distinct eigenvalues among matrices in H(G). It 

is well known that

c(T ) ≥ d(T )

for any tree T [8]. Equality occurs often, but not always. From our results a new and 
simple proof of this fact follows, in Section 5.

In the next section, we set some further notation that we need, and then give some 
key preliminary facts that we will use, including a characterization of the case in which 
a vertex is a downer for just two eigenvalues. In Section 3, we describe the situations 
in which a vertex is a downer for 3 eigenvalues and in Section 4 we give an inductive 
general characterization. Then in Section 5, we give bounds for how frequently a vertex 
is a downer, based on some simple concepts about a tree.
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