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MATRICES SIMILAR TO PARTIAL ISOMETRIES

STEPHAN RAMON GARCIA AND DAVID SHERMAN

Abstract. We determine when a matrix is similar to a partial isometry, refining
a result of Halmos–McLaughlin.

1. Introduction

A Hilbert space operator V is a partial isometry if the restriction of V to (ker V)⊥
is isometric. For a complex matrix, this means that all of its singular values are in
{0, 1}, or in other words, the positive semidefinite factor in its polar decomposi-
tion is an orthogonal projection. These properties are not preserved by similarity;
for example [
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are similar, since both matrices have the same Jordan canonical form. The first is
a partial isometry since its nonzero columns are orthonormal, but the second is
not. Which matrices are similar to a partial isometry?

The basic features of partial isometries were laid out over fifty years ago [2,6,7],
and the similarity question is not new – but most work has focused on the (still
unresolved) infinite-dimensional case, e.g., [3]. In the finite-dimensional case, the
best result was a theorem of Halmos–McLaughlin stating that the characteristic
polynomial of a nonunitary partial isometry can be any monic polynomial whose
roots lie in the closed unit disk and include zero [6, Theorem 3]. The referee
pointed out that this can be deduced directly from the Weyl–Horn inequalities
[8,13], which say that there exists an n × n matrix with prescribed singular values
σ1 ≥ σ2 ≥ · · · σn ≥ 0 and eigenvalues λ1, λ2, . . . , λn, indexed so that |λ1| ≥ |λ2| ≥
· · · ≥ |λn|, if and only if

σ1σ2 · · · σk ≥ |λ1λ2 · · · λk| for k = 1, 2, . . . , n − 1

and
σ1σ2 · · · σn = |λ1λ2 · · · λn|.

For an n × n partial isometry of rank r < n, we have

σ1 = σ2 = · · · = σr = 1 and σr+1 = · · · = σn = 0.

Hence any n points (with possible repetition) in the closed unit disk can be its
eigenvalues, so long as at least n − r of them are zero.
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