A short note on the ratio between sign-real and sign-complex spectral radius of a real square matrix

Florian Bünger
Institute for Reliable Computing, Hamburg University of Technology, Am Schwarzenberg-Campus 3, Hamburg 21071, Germany

A R T I C L E I N F O

Article history:

Received 11 April 2017
Accepted 19 April 2017
Available online 24 April 2017
Submitted by V. Mehrmann

MSC:

15A42
15A18
Keywords:
Sign-real spectral radius
Sign-complex spectral radius
Spectral radius
Eigenvalue inequalities

A B S T R A C T

For a real $(n \times n)$-matrix A the sign-real and the sign-complex spectral radius - invented by Rump - are respectively defined as

$$
\begin{aligned}
\rho^{\mathbb{R}}(A) & :=\max \left\{|\lambda|| | A x\left|=|\lambda x|, \lambda \in \mathbb{R}, x \in \mathbb{R}^{n} \backslash\{0\}\right\},\right. \\
\rho^{\mathbb{C}}(A) & :=\max \left\{|\lambda|| | A x\left|=|\lambda x|, \lambda \in \mathbb{C}, x \in \mathbb{C}^{n} \backslash\{0\}\right\} .\right.
\end{aligned}
$$

For $n \geq 2$ we prove $\rho^{\mathbb{R}}(A) \geq \zeta_{n} \rho^{\mathbb{C}}(A)$ where the constant $\zeta_{n}:=\sqrt{\frac{1-\cos (\pi / n)}{1+\cos (\pi / n)}}$ is best possible.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let $n \in \mathbb{N}:=\{1,2, \ldots\}$ and $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. For a square matrix $A \in \mathbb{K}^{n, n}$ the so-called generalized spectral radius is defined by

$$
\begin{equation*}
\rho^{\mathbb{K}}(A):=\max \left\{|\lambda| \quad|A x|=|\lambda x|, \lambda \in \mathbb{K}, x \in \mathbb{K}^{n} \backslash\{0\}\right\} .^{1} \tag{1}
\end{equation*}
$$

[^0]For $\mathbb{K}=\mathbb{R}$ it is called sign-real and for $\mathbb{K}=\mathbb{C}$ sign-complex spectral radius. The generalized spectral radius was invented and investigated by Rump [3-8]. ${ }^{2}$ The new concept was used and extended, for example, by Goldberger and Neumann [1], Peña [2], Varga [9], Zalar [10], and Zangiabadi and Afshin [11,12]. Rump gave many equivalent definitions of the generalized spectral radius, e.g. the Max-Min-characterization [8], Theorem 2.4:

$$
\begin{equation*}
\rho^{\mathbb{K}}(A)=\max _{x \in \mathbb{K}^{n} \backslash\{0\}} \min _{x_{i} \neq 0} \frac{\left|(A x)_{i}\right|}{\left|x_{i}\right|} \tag{2}
\end{equation*}
$$

Here we are interested in bounding the ratio $\rho^{\mathbb{R}}(A) / \rho^{\mathbb{C}}(A)$ between sign-real and sign-complex spectral radius from below independent of a specific real A, i.e., we are searching for the maximum constant $\zeta_{n} \in \mathbb{R}_{\geq 0}$ that fulfills

$$
\begin{equation*}
\rho^{\mathbb{R}}(A) \geq \zeta_{n} \rho^{\mathbb{C}}(A) \quad \text { for all } A \in \mathbb{R}^{n, n} \tag{3}
\end{equation*}
$$

First, note that the one-dimensional case $n=1$ is trivial since sign-real and sign-complex spectral radius of a real (1×1)-matrix coincide. Therefore we will assume $n \geq 2$ from now on. Next, note that bounding the ratio $\rho^{\mathbb{R}}(A) / \rho^{\mathbb{C}}(A)$ from above yields 1 as best possible upper bound since by definition $\rho^{\mathbb{R}}(A) \leq \rho^{\mathbb{C}}(A)$ and $\rho^{\mathbb{R}}(A)=\rho^{\mathbb{C}}(A)$ for real diagonal matrices A.

In [8], Theorem 6.1, Rump proved that the skew-symmetric Toeplitz matrix

$$
A:=(\operatorname{sign}(\mathrm{j}-\mathrm{i}))_{1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}}=\left(\begin{array}{cccc}
0 & 1 & \cdots & 1 \tag{4}\\
-1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
-1 & \cdots & -1 & 0
\end{array}\right)
$$

has sign-real spectral radius $\rho^{\mathbb{R}}(A)=1$ and sign-complex spectral radius

$$
\begin{equation*}
\rho^{\mathbb{C}}(A)=\rho(A)=\|A\|_{2}=\frac{\sin (\pi / n)}{1-\cos (\pi / n)}=\sqrt{\frac{1+\cos (\pi / n)}{1-\cos (\pi / n)}}=: \zeta_{n}^{-1} \tag{5}
\end{equation*}
$$

where $\rho(A)$ denotes the common spectral radius, i.e., the maximum modulus of all eigenvalues. Thus $\rho^{\mathbb{R}}(A) / \rho^{\mathbb{C}}(A)=1 / \rho^{\mathbb{C}}(A)=\zeta_{n}$ for the matrix in (4) and $n \geq 2$.

The main goal of this short note is to prove that ζ_{n} as defined in (5) fulfills (3). This is demonstrated in the following main theorem:

Theorem 1. For $n \in \mathbb{N}_{\geq 2}$ and every $A \in \mathbb{R}^{n, n}$ we have

$$
\begin{equation*}
\rho^{\mathbb{R}}(A) \geq \zeta_{n} \rho^{\mathbb{C}}(A) \tag{6}
\end{equation*}
$$

[^1]
https://daneshyari.com/en/article/5773263

Download Persian Version:
https://daneshyari.com/article/5773263

Daneshyari.com

[^0]: E-mail address: florian.buenger@tuhh.de.
 1 The equality $|A x|=|\lambda x|$ is meant componentwise.

[^1]: ${ }^{2}$ The notation of the sign-real spectral radius changes from $\rho_{0}^{S}(A)$ in earlier papers to $\rho^{\mathbb{R}}(A)$.

