Row polynomial matrices of Riordan arrays

Lili Mu, Jianxi Mao, Yi Wang*
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China

A R T I C L E I N F O

Article history:

Received 13 April 2016
Accepted 3 February 2017
Available online 10 February 2017
Submitted by R. Brualdi

MSC:

15B99
15A45
05A19
05A20

Keywords:
Riordan array
Total positivity
Log-convexity

A B S T R A C T

Let $R=\left[r_{n, k}\right]_{n, k \geq 0}$ be a Riordan array. Define the row polynomials $R_{n}(q)=\sum_{k=0}^{n} r_{n, k} q^{k}$ and the row polynomial $\operatorname{matrix} R(q)=\left[r_{n, k}(q)\right]_{n, k \geq 0}$ by $r_{n, k}(q)=\sum_{j=k}^{n} r_{n, j} q^{j-k}$. Then $R(q)$ is also a Riordan array with the $R_{n}(q)$ located on the leftmost column of $R(q)$. In this paper we investigate combinatorial properties of the matrix $R(q)$ and the sequence $\left(R_{n}(q)\right)_{n \geq 0}$, including their characterizations, the q-total positivity of $R(q)$ and the q-log-convexity of $\left(R_{n}(q)\right)_{n \geq 0}$.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The concept of Riordan arrays was introduced by Shapiro et al. [21]. It turns out to be a very powerful tool in enumerative combinatorics and it is now intensively studied. A (proper) Riordan array, denoted by $(d(x), h(x))$, is an infinite lower triangular matrix whose generating function of the k th column is $h^{k}(x) d(x)$ for $k=0,1,2, \ldots$, where

[^0]$d(0)=1, h(0)=0$ and $h^{\prime}(0) \neq 0$. It is well known that the set of all Riordan arrays is a group under the matrix multiplication and
$$
(d(x), h(x))(g(x), f(x))=(d(x) g(h(x)), f(h(x)))
$$

The identity matrix can be written as $(1, x)$ and the inverse of $(d(x), h(x))$ is given by $(1 / d(\bar{h}(x)), \bar{h}(x))$, where \bar{h} is the compositional inverse of h, i.e., $h(\bar{h}(x))=\bar{h}(h(x))=x$.

Riordan arrays play an important role in dealing with combinatorial sums (see [13, $16,17,23,24]$ for instance). More precisely, let $R=\left[r_{n, k}\right]_{n, k \geq 0}$ be a Riordan array and $\left(g_{k}\right)_{k \geq 0}$ a sequence with the generating function $g(x)=\sum_{k \geq 0} g_{k} x^{k}$. Then

$$
\sum_{k=0}^{n} r_{n, k} g_{k}=\left[x^{n}\right] d(x) g(h(x))
$$

which is called the fundamental theorem of Riordan arrays. Major interest is usually given to the row sums $\alpha_{n}=\sum_{k=0}^{n} r_{n, k}$, the alternating row sums $\beta_{n}=\sum_{k=0}^{n}(-1)^{k} r_{n, k}$, the weighted row sums $\delta_{n}=\sum_{k=1}^{n} k r_{n, k}$ and $\gamma_{n}=\sum_{k=0}^{n}(-1)^{k} k r_{n, k}$. Define the row polynomials of R by

$$
R_{n}(q)=\sum_{j=0}^{n} r_{n, j} q^{j}, \quad n=0,1,2, \ldots
$$

Then $\alpha_{n}=R_{n}(1), \beta_{n}=R_{n}(-1), \delta_{n}=R_{n}^{\prime}(1)$ and $\gamma_{n}=R_{n}^{\prime}(-1)$. Let

$$
Q=\left[\begin{array}{ccccc}
1 & & & & \\
q & 1 & & & \\
q^{2} & q & 1 & & \\
q^{3} & q^{2} & q & 1 & \\
\vdots & & & & \ddots
\end{array}\right]
$$

Define the row polynomial matrix $R(q)=\left[r_{n, k}(q)\right]_{n, k \geq 0}$ of R by $R(q)=R Q$. Then

$$
r_{n, k}(q)=\sum_{j=k}^{n} r_{n, j} q^{j-k}
$$

Clearly, $R_{n}(q)$ are located on the leftmost column of $R(q)$, and $R(1)$ is the (partial row) sum matrix of R. Thus the row polynomials and the row polynomial matrix provide a unified approach to deal with certain row sum problems.

In recent years, there have been some papers concerning the row polynomials and the row polynomial matrix of a lower triangular matrix. Wang and Yeh [25] showed that the row polynomials of many well-known triangles have only real zeros. Wang and Yeh [26] gave a sufficient condition that a linear transformation preserves the log-concavity by

https://daneshyari.com/en/article/5773285

Download Persian Version:
https://daneshyari.com/article/5773285

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: lly-mu@hotmail.com (L. Mu), maojianxi@hotmail.com (J. Mao), wangyi@dlut.edu.cn (Y. Wang).

