Bounds for the positive and negative inertia index of a graph ${ }^{\hat{4}}$

Yi-Zheng Fan ${ }^{*}$, Long Wang
School of Mathematical Sciences, Anhui University, Hefei 230601, PR China

A R T I C L E I N F O

Article history:

Received 2 October 2014
Accepted 3 February 2017
Available online 10 February 2017
Submitted by R. Brualdi

MSC:
 05C50

Keywords:
Positive inertia index
Negative inertia index
Matching number
Cyclomatic number

A B S T R A C T

Let G be a graph and let $A(G)$ be adjacency matrix of G. The positive inertia index (respectively, the negative inertia index) of G, denoted by $p(G)$ (respectively, $n(G)$), is defined to be the number of positive eigenvalues (respectively, negative eigenvalues) of $A(G)$. In this paper, we present the bounds for $p(G)$ and $n(G)$ as follows:

$$
\begin{aligned}
& m(G)-c(G) \leq p(G) \leq m(G)+c(G) \\
& m(G)-c(G) \leq n(G) \leq m(G)+c(G)
\end{aligned}
$$

where $m(G)$ and $c(G)$ are respectively the matching number and the cyclomatic number of G. Furthermore, we characterize the graphs which attain the upper bounds and the lower bounds respectively.
© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $G=\left(V(G), E(G)\right.$ be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The adjacency matrix $A(G)$ of G is defined to be an $n \times n$ symmetric matrix [$a_{i j}$] such that $a_{i j}=1$ if $v_{i} v_{j} \in E(G)$, and $a_{i j}=0$ otherwise. The eigenvalues of G will be referred to the eigenvalues of $A(G)$. The positive inertia index (respectively, the negative inertia index) of G, denoted by $p(G)$ (respectively, $n(G)$), is defined to be the number of positive eigenvalues (respectively, negative eigenvalues) of $A(G)$. The rank of G, denoted by $r(G)$, is exactly the sum of $p(G)$ and $n(G)$.

According to Hückel theory, the eigenvalues of a chemical graph (i.e. a connected graph with maximum degree at most three) specify the allowed energies of the π molecular orbitals available for occupation by electrons. Such a graph or corresponding molecule is said to be (properly) closed-shell if exactly half of its eigenvalues are positive (requiring an even number of vertices), which indicates a stable π-system (see [4]). Chemists are interested in whether the molecular graph of an unsaturated hydrocarbon is (properly) closed-shell, having exactly half of its eigenvalues greater than zero, because this designates a stable electron configuration.

In the mathematics itself, one would like to know or bound $p(G)$ or $n(G)$ for a graph G. The problem is closed related to the nullity $\eta(G)$ of G, which is defined to be the number of zero eigenvalues of $A(G)$, since $p(G)+n(G)=|V(G)|-\eta(G)$. Smith [8] proved that a connected graph has exactly one positive eigenvalue if and only if it is complete multipartite. Later Torgašv [9] characterized the graphs with given number of negative eigenvalues. Recently, Yu et al. [11] investigated the minimum positive inertia index among all bicyclic graphs of fixed order with pendant vertices, and characterized the bicyclic graphs with positive index 1 or 2 . Ma et al. [6] discussed the positive or the negative inertia index for a graph with at most three cycles, and proved that $\mid p(G)$ $n(G) \mid \leq c_{1}(G)$ for any graph G, where $c_{1}(G)$ denotes the number of odd cycles contained in G. They conjectured that

$$
\begin{equation*}
-c_{3}(G) \leq p(G)-n(G) \leq c_{5}(G) \tag{1.1}
\end{equation*}
$$

where $c_{3}(G)$ and $c_{5}(G)$ denote the number of cycles having length 3 modulo 4 and length 1 modulo 4 respectively. In [10] we proved that the conjecture (1.1) holds for line graphs and power trees. In addition, Ma et al. [7] proved that the positive inertia index of the line graph of a tree T lies between the interval $\left[\frac{\epsilon(T)+1}{2}, \epsilon(T)+1\right]$, where $\epsilon(T)$ denotes the number of non-pendant edges of T.

We specify that Daugherty [3] characterized the positive or negative inertia of unicyclic graphs in terms of the matching number; see Theorem 2.6 below. This motivates us to give a characterization for general graphs in terms of the matching number. Denote by $m(G)$ the matching number of a graph G, and $c(G)$ the cyclomatic number of G defined by $c(G)=|E(G)|-|V(G)|+\theta(G)$, where $\theta(G)$ is the number of connected components

https://daneshyari.com/en/article/5773286

Download Persian Version:

https://daneshyari.com/article/5773286

Daneshyari.com

[^0]: ${ }^{2}$ h Supported by National Natural Science Foundation of China (11371028), Program for New Century Excellent Talents in University (NCET-10-0001), Scientific Research Fund for Fostering Distinguished Young Scholars of Anhui University (KJJQ1001), Academic Innovation Team of Anhui University Project (KJTD001B).

 * Corresponding author.

 E-mail addresses: fanyz@ahu.edu.cn (Y.-Z. Fan), wanglongxuzhou@126.com (L. Wang).

