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The Jacobi–Davidson method is one of the most popular 
approaches for iteratively computing a few eigenvalues and 
their associated eigenvectors of a large matrix. The key of 
this method is to expand the search subspace via solving 
the Jacobi–Davidson correction equation, whose coefficient 
matrix is singular. It is believed by scholars that the Jacobi–
Davidson correction equation is consistent and has a unique 
solution. In this paper, however, we point out that the correc-
tion equation either has a unique solution or has no solution, 
and we derive a computable necessary and sufficient condi-
tion for cheaply judging the existence and uniqueness of the 
solution. Furthermore, we consider the problem of stagnation 
and verify that if the Jacobi–Davidson method stagnates, then 
the corresponding Ritz value is a defective eigenvalue of the 
projection matrix. Finally, we provide a computable criterion 
for expanding the search subspace successfully. The properties 
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of some alternative Jacobi–Davidson correction equations are 
also discussed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in computing a few eigenvalues and the corresponding eigenvectors 
of an n-by-n large matrix A. The Jacobi–Davidson method is one of the most popular ap-
proaches for this type of problem, see [1,4,7,10–16] and the references therein. In essence, 
this method can be understood as a Newton-based method [15]. The Jacobi–Davidson 
method relies on two principles [11,12]: Given a subspace Vk and let Vk = [v1, v2, . . . , vk]
be an orthonormal basis for Vk with k � n, the first principle is to apply a Ritz–Galerkin 
approach [15] on the large eigenproblem Ax = λx, i.e.,

AVkyk − λ̃kVkyk ⊥ Vk,

which reduces to a k-by-k eigenproblem

V H
k AVkyk = λ̃kyk,

with V H
k AVk being the projection matrix of A in Vk. Then this method makes use of 

(λ̃k, uk = Vkyk) as an approximate eigenpair, called Ritz pair of A in the subspace 
spanned by the columns of Vk.

The second principle is to modify the approximation from solving the Jacobi–Davidson 
correction equation for expanding Vk. More precisely, for the approximate eigenvector 
uk, the Jacobi–Davidson method computes an orthogonal correction v∗ for uk, such that

A(uk + v∗) = λ(uk + v∗).

As v∗⊥uk, we focus on the subspace orthogonal to uk. Let rk = (A − λ̃kI)uk be the 
residual, then rk⊥uk, and the orthogonal projection of A onto the subspace range{uk}⊥
is (I −ukuH

k )A(I −ukuH
k ), where range{uk} denotes the range or the subspace spanned 

by uk, range{uk}⊥ represents the orthogonal complement of range{uk}, and (·)H stands 
for the conjugate transpose of a matrix or vector. It is easy to check that the vector v∗
satisfies

(I − ukuH
k )(A− λI)(I − ukuH

k )v∗ = −rk.

Since the eigenvalue λ is unknown, we replace it by λ̃k, which yields the famous Jacobi–
Davidson correction equation [11,12]

(I − ukuH
k )(A− λ̃kI)(I − ukuH

k )v = −rk. (1.1)
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