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CYCLIC TRIDIAGONAL PAIRS, HIGHER ORDER ONSAGER ALGEBRAS

AND ORTHOGONAL POLYNOMIALS

P. BASEILHAC∗,�, A.M. GAINUTDINOV∗,†, AND T.T. VU∗

Abstract. The concept of cyclic tridiagonal pairs is introduced, and explicit examples are given.
For a fairly general class of cyclic tridiagonal pairs with cyclicity N , we associate a pair of ‘divided
polynomials’. The properties of this pair generalize the ones of tridiagonal pairs of Racah type. The
algebra generated by the pair of divided polynomials is identified as a higher-order generalization of the
Onsager algebra. It can be viewed as a subalgebra of the q−Onsager algebra for a proper specialization
at q the primitive 2Nth root of unity. Orthogonal polynomials beyond the Leonard duality are revisited
in light of this framework. In particular, certain second-order Dunkl shift operators provide a realization
of the divided polynomials at N = 2 or q = i.
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1. Introduction

Let K denote a field. Let V denote a vector space over K with finite positive dimension. Recall
that a Leonard pair is a pair of linear transformations A,A∗ such that there exist two bases for V
with respect to which the matrix representing A (resp. A∗) is irreducible tridiagonal (resp. diag-
onal) and the matrix representing A∗ (resp. A) is diagonal (resp. irreducible tridiagonal) [T99].
For the well-known families of one-variable orthogonal polynomials in the Askey-scheme including
the Bannai–Ito polynomials [BI84], the bispectral problem they solve finds a natural interpretation
within the framework of Leonard’s theorem [BI84] and Leonard pairs [T03]: given a Leonard pair, the
overlap coefficients between the two bases coincide with polynomials of the Askey-scheme (q−Racah,
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