Nonoscillation of second-order linear difference systems with varying coefficients

Jitsuro Sugie
Department of Mathematics, Shimane University, Matsue 690-8504, Japan

A R T I C L E I N F O

Article history:

Received 9 August 2016
Accepted 16 May 2017
Available online 29 May 2017
Submitted by H. Fassbender

$M S C$:

39A06
39A10
39A21
Keywords:
Linear difference equations
Non-autonomous
Nonoscillation
Riccati transformation
Sturm's separation theorem

A B S TRACT

This paper deals with nonoscillation problem about the nonautonomous linear difference system

$$
\mathbf{x}_{n}=A_{n} \mathbf{x}_{n-1}, \quad n=1,2, \ldots
$$

where A_{n} is a 2×2 variable matrix that is nonsingular for $n \in \mathbb{N}$. In the special case that A is a constant matrix, it is well-known that all non-trivial solutions are nonoscillatory if and only if all eigenvalues of A are positive real numbers; namely, $\operatorname{det} A>0, \operatorname{tr} A>0$ and $\operatorname{det} A /(\operatorname{tr} A)^{2} \leq 1 / 4$. The well-known result can be said to be an analogy of ordinary differential equations. The results obtained in this paper extend this analogy result. In other words, this paper clarifies the distinction between difference equations and ordinary differential equations. Our results are explained with some specific examples. In addition, figures are attached to facilitate understanding of those examples.
© 2017 Elsevier Inc. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.laa.2017.05.031
0024-3795/@ 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider the second-order linear time-variant system

$$
\begin{equation*}
\mathbf{x}_{n}=A_{n} \mathbf{x}_{n-1}, \quad n=1,2, \ldots \tag{1.1}
\end{equation*}
$$

where

$$
\mathbf{x}_{n}=\binom{x_{n}}{y_{n}} \quad \text { and } \quad A_{n}=\left(\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right)
$$

in which the components x_{n} and y_{n} and the coefficients a_{n}, b_{n}, c_{n} and d_{n} are real numbers. It is always assumed that the matrix A_{n} is nonsingular for $n \in \mathbb{N}$. Needless to say, equation (1.1) has the trivial solution $\left\{\mathbf{x}_{n}\right\}$; that is, $\left(x_{n}, y_{n}\right)=(0,0)$ for $n \in \mathbb{N}$. A non-trivial solution $\left\{\mathbf{x}_{n}\right\}$ of (1.1) is said to be oscillatory with respect to the first (resp., second) component if, for every $n \in \mathbb{N}$ there exists an $m \geq n$ such that $x_{m} x_{m+1} \leq 0$ (resp., $y_{m} y_{m+1} \leq 0$). Otherwise, it is said to be nonoscillatory with respect to the first (or second) component. Hence, if a non-trivial solution $\left\{\mathbf{x}_{n}\right\}$ of (1.1) is nonoscillatory with respect to the first (resp., second) component, then there exists an $m \in \mathbb{N}$ such that $x_{n}>0$ for $n \geq m$ or $x_{n}<0$ for $n \geq m$ (resp., $y_{n}>0$ for $n \geq m$ or $y_{n}<0$ for $n \geq m)$. It is clear that if $\left\{\mathbf{x}_{n}\right\}$ is a solution of (1.1), then $\left\{-\mathbf{x}_{n}\right\}$ is also a solution of (1.1). Hence, we can assume without loss of generality that a non-trivial solution $\left\{\mathbf{x}_{n}\right\}$ of (1.1) which is nonoscillatory with respect to the first (resp., second) component satisfy that x_{n} (resp., y_{n}) is positive for all large n. A non-trivial solution $\left\{\mathbf{x}_{n}\right\}$ of (1.1) is said to be nonoscillatory if it is nonoscillatory with respect to the first and second components.

The purpose of this paper is to give sufficient conditions for all non-trivial solutions of (1.1) to be nonoscillatory with respect to the first (or second) component. Of course, the coefficients of the matrix A_{n} determine whether or not all non-trivial solutions of (1.1) are nonoscillatory with respect to the first component.

In the special case that

$$
A_{n} \equiv A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where a, b, c and d are real constants, system (1.1) is equivalent to the second-order autonomous linear equations

$$
\begin{equation*}
x_{n+1}+(\operatorname{det} A) x_{n-1}=(\operatorname{tr} A) x_{n} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{n+1}+(\operatorname{det} A) y_{n-1}=(\operatorname{tr} A) y_{n} \tag{1.3}
\end{equation*}
$$

for $n \in \mathbb{N}$. It is clear that if $\operatorname{det} A<0$, then the characteristic equation

Download Persian Version:
https://daneshyari.com/article/5773303

Daneshyari.com

[^0]: E-mail address: jsugie@riko.shimane-u.ac.jp.

