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Starting from particular congruences concerning permanents 
of some (0, 1) circulant matrices, we derive more general 
congruences for permanents and determinants. We also 
analyze the relation of such results with some congruences 
satisfied by the norms of algebraic integers in cyclotomic 
fields.
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1. Introduction

Permanents and determinants of (0, 1) circulant matrices have been recently studied 
in several works. Determinants of such matrices, when the number of 1’s per row is 
limited, are known (in view of results in [2]) to be computable in any case in O(n)
time (n denoting the matrix size), while presently the calculation of permanents requires 
O(n2n) time (via Ryser’s algorithm [4]) for generic (0, 1) circulants having at least four 
ones per row; only in the case of (0, 1) circulants with three ones per row the permanent 
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can be calculated in O(n) time, in view of appropriate formulas (shown in [1]) giving the 
permanent as a linear combination of four determinants of suitable related matrices.

In [5] the permanents of n × n (0, 1)-circulant matrices were investigated from an 
algebraic viewpoint, obtaining constraining congruences for their values for particular 
classes of n’s. In this paper we first show that similar congruences hold for both perma-
nents and determinants and for a more general class of n’s. After deriving such extended 
relations, we combine some of them with known formulas for determinants of circulants; 
such formulas involve appropriate complex unity roots. In this way we obtain interest-
ing connections between determinants of (0, 1) circulants and norms of some algebraic 
integers in cyclotomic fields.

After this, extending the discussion to generic (not necessarily (0, 1)) n × n circulant 
matrices with entries in Z, we derive more general relations for permanents and determi-
nants. The connection, existing between the extended results on determinants and the 
norms of algebraic integers in cyclotomic fields, is also shown.

2. Permanents and determinants of (0, 1) circulants

Let Σn denote the set of all permutations of Zn (or, equivalently, of permutations of 
the first n positive integers). Given an n ×n square matrix A, the permanent of A is the 
number

Per(A) =
∑
σ∈Σn

n∏
i=1

ai, σ(i) ,

while the determinant of A is

Det(A) =
∑
σ∈Σn

(−1)|σ|
n∏

i=1
ai, σ(i) .

In the rest of the paper we denote, respectively, by In the n × n identity matrix and 
by Pn the n ×n circulant (0, 1) matrix with the only 1’s in positions (n, 1) and (i, i +1), 
i = 1, 2, ..., n − 1.

For generic number field K, the notation NK
Q indicates the classical norm function 

defined over K.

Now we fix a generic n ×n (0, 1) circulant matrix A with k non-zero entries per row; 
A can be expressed as P i1

n + P i2
n + . . . + P ik

n , where 0 ≤ i1 < i2 < · · · < ik ≤ n − 1.
We observe that the permanent of A (or, equivalently, the number of nonzero addenda 

in the expression of the determinant of A) is equal to the cardinality of the set E =
EA = Ei1, i2, ..., ik of permutations π ∈ Σn such that, for each x ∈ Zn, π(x) ∈ {x +
i1, x + i2, ..., x + ik} (mod n). For any permutation π ∈ Σn, let us define the increment 
function Tπ : Zn → Zn by setting
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