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Jacek Chmieliński, Tomasz Stypuła, Paweł Wójcik

PII: S0024-3795(17)30363-4
DOI: http://dx.doi.org/10.1016/j.laa.2017.06.001
Reference: LAA 14199

To appear in: Linear Algebra and its Applications

Received date: 1 March 2017
Accepted date: 1 June 2017
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Abstract

In a normed space we consider an approximate orthogonality relation related
to the Birkhoff orthogonality. We give some properties of this relation as well
as applications. In particular, we characterize the approximate orthogonality
in the class of linear bounded operators on a Hilbert space.
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1. Introduction

In an inner product space (X, 〈·|·〉), with the standard orthogonality rela-
tion x⊥y ⇔ 〈x|y〉 = 0, a natural way to define an approximate orthogonality
(or more precisely ε-orthogonality with ε ∈ [0, 1)) is by:

x⊥εy ⇐⇒ | 〈x|y〉 | ≤ ε ‖x‖ ‖y‖, x, y ∈ X.

It is easy to show, in this setting, the following characterization:

x⊥εy ⇐⇒ ∃ z ∈ X : x⊥z, ‖z − y‖ ≤ ε‖y‖. (1.1)

Indeed, if x⊥εy, then it is enough to take z = − 〈x|y〉
‖x‖2 x + y for x �= 0 and

z = y for x = 0. Conversely, assuming x⊥z and ‖z − y‖ ≤ ε‖y‖, we get
| 〈x|y〉 | = | 〈x|y − z〉 | ≤ ‖x‖ ‖y − z‖ ≤ ε‖x‖ ‖y‖, that is x⊥εy. Notice that z
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