Classification of linear mappings between indefinite inner product spaces

Juan Meleiro ${ }^{\text {a }}$, Vladimir V. Sergeichuk ${ }^{\text {b,* }}$, Thiago Solovera ${ }^{\text {a }}$, André Zaidan ${ }^{\text {a }}$
${ }^{\text {a }}$ Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil
${ }^{\text {b }}$ Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine

A R T I C L E I N F O

Article history:

Received 5 February 2017
Accepted 2 June 2017
Available online 13 June 2017
Submitted by C. Mehl

MSC:

11E39
15A21
15A63
46C20

Keywords:
Indefinite inner product spaces
Hermitian spaces
Canonical forms
Quivers with involution

Abstract

Let $\mathcal{A}: U \rightarrow V$ be a linear mapping between vector spaces U and V over a field or skew field \mathbb{F} with symmetric, or skew-symmetric, or Hermitian forms $\mathcal{B}: U \times U \rightarrow \mathbb{F}$ and $\mathcal{C}: V \times V \rightarrow \mathbb{F}$. We classify the triples $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ if \mathbb{F} is \mathbb{R}, or \mathbb{C}, or the skew field of quaternions \mathbb{H}. We also classify the triples $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ up to classification of symmetric forms and Hermitian forms if the characteristic of \mathbb{F} is not 2 .

© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

We consider a triple

$$
\begin{equation*}
\mathcal{A}: U \rightarrow V, \quad \mathcal{B}: U \times U \rightarrow \mathbb{F}, \quad \mathcal{C}: V \times V \rightarrow \mathbb{F} \tag{1}
\end{equation*}
$$

consisting of a linear mapping \mathcal{A} and two forms \mathcal{B} and \mathcal{C} on finite-dimensional vector spaces U and V over a field or skew field \mathbb{F} of characteristic not 2. Each of the forms \mathcal{B} and \mathcal{C} is either symmetric or skew-symmetric if \mathbb{F} is a field, or both the forms are Hermitian with respect to a fixed nonidentity involution in \mathbb{F}.

A canonical form of the triple of matrices of (1) over a field \mathbb{F} of characteristic not 2 was obtained in the deposited manuscript [22] up to classification of Hermitian forms over finite extensions of \mathbb{F}. The aim of this paper is to give a detailed exposition of this result and extend it to triples (1) over a skew field of characteristic not 2 . We give canonical matrices of (1) over \mathbb{R}, \mathbb{C}, and the skew field of quaternions \mathbb{H}.

Other canonical matrices of (1) with nonsingular forms \mathcal{B} and \mathcal{C} over the fields \mathbb{R} and \mathbb{C} were given by Mehl, Mehrmann, and Xu [14-16], and by Bolshakov and Reichstein [2].

Following [22], we represent the triple (1) by the graph

in which $\varepsilon=+$ if \mathcal{B} is symmetric or Hermitian and $\varepsilon=-$ if \mathcal{B} is skew-symmetric; $\delta=+$ if \mathcal{C} is symmetric or Hermitian and $\delta=-$ if \mathcal{C} is skew-symmetric.

Choosing bases in U and V, we give (1) by the triple (A, B, C) of matrices of \mathcal{A}, \mathcal{B}, and \mathcal{C}. Changing bases, we can reduce it by transformations

$$
\begin{equation*}
(A, B, C) \mapsto\left(S^{-1} A R, R^{\star} B R, S^{\star} C S\right), \tag{3}
\end{equation*}
$$

in which R and S are nonsingular and

$$
M^{\star \imath}=M^{\top} \quad \text { or } \quad M^{\hat{\imath}}=\widetilde{M}^{\top}
$$

with respect to a fixed involution $a \mapsto \tilde{a}$ in \mathbb{F}. Thus, we consider the canonical form problem for matrix triples under transformations (3). We represent the matrix triple (A, B, C) by the graph

$$
\begin{array}{ll}
m_{i}^{m} \underbrace{}_{n}\left(\begin{array}{l}
\text { ® }
\end{array}\right. & m:=\operatorname{dim} U, \tag{4}\\
& n:=\operatorname{dim} V .
\end{array}
$$

https://daneshyari.com/en/article/5773322

Download Persian Version
https://daneshyari.com/article/5773322

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: juan.meleiro@me.com (J. Meleiro), sergeich@imath.kiev.ua (V.V. Sergeichuk), thiago.solovera.nery@usp.br (T. Solovera), andre.zaidan@gmail.com (A. Zaidan).

