

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Classification of linear mappings between indefinite inner product spaces

LINEAR

lications

Juan Meleiro^a, Vladimir V. Sergeichuk^{b,*}, Thiago Solovera^a, André Zaidan^a

^a Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil
 ^b Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine

ARTICLE INFO

Article history: Received 5 February 2017 Accepted 2 June 2017 Available online 13 June 2017 Submitted by C. Mehl

MSC: 11E39 15A21 15A63 46C20

Keywords: Indefinite inner product spaces Hermitian spaces Canonical forms Quivers with involution

ABSTRACT

Let $\mathcal{A}: U \to V$ be a linear mapping between vector spaces U and V over a field or skew field \mathbb{F} with symmetric, or skew-symmetric, or Hermitian forms $\mathcal{B}: U \times U \to \mathbb{F}$ and $\mathcal{C}: V \times V \to \mathbb{F}$.

We classify the triples $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ if \mathbb{F} is \mathbb{R} , or \mathbb{C} , or the skew field of quaternions \mathbb{H} . We also classify the triples $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ up to classification of symmetric forms and Hermitian forms if the characteristic of \mathbb{F} is not 2.

@ 2017 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: juan.meleiro@me.com (J. Meleiro), sergeich@imath.kiev.ua (V.V. Sergeichuk), thiago.solovera.nery@usp.br (T. Solovera), andre.zaidan@gmail.com (A. Zaidan).

1. Introduction

We consider a triple

$$\mathcal{A}: U \to V, \qquad \mathcal{B}: U \times U \to \mathbb{F}, \qquad \mathcal{C}: V \times V \to \mathbb{F}$$
 (1)

consisting of a linear mapping \mathcal{A} and two forms \mathcal{B} and \mathcal{C} on finite-dimensional vector spaces U and V over a field or skew field \mathbb{F} of characteristic not 2. Each of the forms \mathcal{B} and \mathcal{C} is either symmetric or skew-symmetric if \mathbb{F} is a field, or both the forms are Hermitian with respect to a fixed nonidentity involution in \mathbb{F} .

A canonical form of the triple of matrices of (1) over a field \mathbb{F} of characteristic not 2 was obtained in the deposited manuscript [22] up to classification of Hermitian forms over finite extensions of \mathbb{F} . The aim of this paper is to give a detailed exposition of this result and extend it to triples (1) over a skew field of characteristic not 2. We give canonical matrices of (1) over \mathbb{R} , \mathbb{C} , and the skew field of quaternions \mathbb{H} .

Other canonical matrices of (1) with nonsingular forms \mathcal{B} and \mathcal{C} over the fields \mathbb{R} and \mathbb{C} were given by Mehl, Mehrmann, and Xu [14–16], and by Bolshakov and Reichstein [2]. Following [22], we represent the triple (1) by the graph

$$\begin{array}{c}
U & \varepsilon & \mathcal{B} \\
A & \downarrow & & \\
V & \delta & c
\end{array}$$
(2)

in which $\varepsilon = +$ if \mathcal{B} is symmetric or Hermitian and $\varepsilon = -$ if \mathcal{B} is skew-symmetric; $\delta = +$ if \mathcal{C} is symmetric or Hermitian and $\delta = -$ if \mathcal{C} is skew-symmetric.

Choosing bases in U and V, we give (1) by the triple (A, B, C) of matrices of \mathcal{A}, \mathcal{B} , and \mathcal{C} . Changing bases, we can reduce it by transformations

$$(A, B, C) \mapsto (S^{-1}AR, R^*BR, S^*CS), \tag{3}$$

in which R and S are nonsingular and

with respect to a fixed involution $a \mapsto \tilde{a}$ in \mathbb{F} . Thus, we consider the canonical form problem for matrix triples under transformations (3). We represent the matrix triple (A, B, C) by the graph

$$\begin{array}{ccc} m & \widehat{\varepsilon} & B & m := \dim U, \\ A & & & \\ n & \widehat{\delta} & C & n := \dim V. \end{array}$$

$$(4)$$

Download English Version:

https://daneshyari.com/en/article/5773322

Download Persian Version:

https://daneshyari.com/article/5773322

Daneshyari.com