

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

General explicit descriptions for intertwining operators and direct rotations of two orthogonal projections $\stackrel{\Rightarrow}{\Rightarrow}$

LINEAR

olications

Yan-Ni Dou, Wei-Juan Shi, Miao-Miao Cui, Hong-Ke Du*

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, People's Republic of China

ARTICLE INFO

Article history: Received 30 May 2017 Accepted 22 June 2017 Available online 28 June 2017 Submitted by A. Böttcher

MSC: 47A05

Keywords: Orthogonal projection Intertwining operator Direct rotation Unitary

ABSTRACT

In this paper, based on the block operator technique and operator spectral theory, general explicit descriptions for intertwining operators and direct rotations of two orthogonal projections are established. As a consequence, Kato's result (Kato, 1996 [14]) is improved, so are J. Avron, R. Seiler and B. Simon's Theorem 2.3 (Avron et al., 1994 [6]) and C. Davis, W.M. Kahan's result (Davis and Kahan, 1970 [11]).

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$ the space of all bounded linear operators on \mathcal{H} . An operator P is called an orthogonal projection if $P = P^* = P^2$. Let \mathcal{P} be the set of

* Corresponding author.

E-mail address: hkdu@snnu.edu.cn (H.-K. Du).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2017.06.036} 0024-3795 \end{tabular} 0217 Elsevier Inc. All rights reserved.$

 $^{^{*}}$ This research was partially supported by the National Natural Science Foundation of China (No. 11571211, 11471200), and the Fundamental Research Funds for the Central Universities (GK201703008).

all orthogonal projections in $\mathcal{B}(\mathcal{H})$. As well-known, orthogonal projections on a Hilbert space are basic objects of study in operator theory (see [1-20] and therein references). In this paper, we will pay attention to the characterization of intertwining operators and direct rotations of two orthogonal projections. Let the set of all unitaries in $\mathcal{B}(\mathcal{H})$ be denoted by $\mathcal{U}(\mathcal{H})$. If P and Q are orthogonal projections and there exists a unitary $U \in \mathcal{U}(\mathcal{H})$ such that

$$UP = QU$$
, (1)

then U is called an outer intertwining operator of P and Q. The set of all outer intertwining operators of a pair (P, Q) of orthogonal projections is denoted by

out
$$\mathcal{U}_Q(P)$$
.

Similarly, if

$$PU = UQ, (2)$$

then U is called an inner intertwining operator of P and Q. The set of all inner intertwining operators of a pair (P, Q) of orthogonal projections is denoted by

inn
$$\mathcal{U}_Q(P)$$
.

Moreover, if both of

$$PU = UQ \text{ and } UP = QU$$
 (3)

hold, then U is called an intertwining operator of P and Q. The set of all intertwining operators of a pair (P, Q) of orthogonal projections is denoted by

int $\mathcal{U}_Q(P)$.

Fix a pair (P,Q) of orthogonal projections. A unitary $U \in \mathcal{U}(\mathcal{H})$ is called a direct rotation from P to Q (see [1] and [11]) if

$$UP = QU, \quad U^2 = (Q^{\perp} - Q)(P^{\perp} - P), \quad \text{Re}U \ge 0,$$
 (4)

where $K^{\perp} = I - K$ if K is an orthogonal projection.

If P and Q are orthogonal projections with || P - Q || < 1, Kato in [14] verified that there exists $U \in \mathcal{U}(\mathcal{H})$ such that PU = UQ. Moreover, Avron, Seiler and Simon ([6]) proved that if P and Q are orthogonal projections on \mathcal{H} with || P - Q || < 1, then there exists a unitary $U \in \mathcal{U}(\mathcal{H})$ with $UPU^* = Q, UQU^* = P$. If P and Q are orthogonal projections having no common eigenvectors, the main result shown by Amrein, Sinha ([2]) Download English Version:

https://daneshyari.com/en/article/5773335

Download Persian Version:

https://daneshyari.com/article/5773335

Daneshyari.com