# General explicit descriptions for intertwining operators and direct rotations of two orthogonal projections 

Yan-Ni Dou, Wei-Juan Shi, Miao-Miao Cui, Hong-Ke Du*<br>College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, People's Republic of China

## A R T I C L E I N F O

## Article history:

Received 30 May 2017
Accepted 22 June 2017
Available online 28 June 2017
Submitted by A. Böttcher

## MSC:

47A05

Keywords:
Orthogonal projection
Intertwining operator
Direct rotation
Unitary


#### Abstract

In this paper, based on the block operator technique and operator spectral theory, general explicit descriptions for intertwining operators and direct rotations of two orthogonal projections are established. As a consequence, Kato's result (Kato, 1996 [14]) is improved, so are J. Avron, R. Seiler and B. Simon's Theorem 2.3 (Avron et al., 1994 [6]) and C. Davis, W.M. Kahan's result (Davis and Kahan, 1970 [11]). © 2017 Elsevier Inc. All rights reserved.


## 1. Introduction

Let $\mathcal{H}$ be a Hilbert space and $\mathcal{B}(\mathcal{H})$ the space of all bounded linear operators on $\mathcal{H}$. An operator $P$ is called an orthogonal projection if $P=P^{*}=P^{2}$. Let $\mathcal{P}$ be the set of

[^0]all orthogonal projections in $\mathcal{B}(\mathcal{H})$. As well-known, orthogonal projections on a Hilbert space are basic objects of study in operator theory (see [1-20] and therein references). In this paper, we will pay attention to the characterization of intertwining operators and direct rotations of two orthogonal projections. Let the set of all unitaries in $\mathcal{B}(\mathcal{H})$ be denoted by $\mathcal{U}(\mathcal{H})$. If $P$ and $Q$ are orthogonal projections and there exists a unitary $U \in \mathcal{U}(\mathcal{H})$ such that
\[

$$
\begin{equation*}
U P=Q U \tag{1}
\end{equation*}
$$

\]

then $U$ is called an outer intertwining operator of $P$ and $Q$. The set of all outer intertwining operators of a pair $(P, Q)$ of orthogonal projections is denoted by

$$
\text { out } \mathcal{U}_{Q}(P)
$$

Similarly, if

$$
\begin{equation*}
P U=U Q \tag{2}
\end{equation*}
$$

then $U$ is called an inner intertwining operator of $P$ and $Q$. The set of all inner intertwining operators of a pair $(P, Q)$ of orthogonal projections is denoted by

$$
\operatorname{inn} \mathcal{U}_{Q}(P)
$$

Moreover, if both of

$$
\begin{equation*}
P U=U Q \text { and } U P=Q U \tag{3}
\end{equation*}
$$

hold, then $U$ is called an intertwining operator of $P$ and $Q$. The set of all intertwining operators of a pair $(P, Q)$ of orthogonal projections is denoted by

$$
\operatorname{int} \mathcal{U}_{Q}(P)
$$

Fix a pair $(P, Q)$ of orthogonal projections. A unitary $U \in \mathcal{U}(\mathcal{H})$ is called a direct rotation from $P$ to $Q$ (see [1] and [11]) if

$$
\begin{equation*}
U P=Q U, \quad U^{2}=\left(Q^{\perp}-Q\right)\left(P^{\perp}-P\right), \quad \operatorname{Re} U \geq 0 \tag{4}
\end{equation*}
$$

where $K^{\perp}=I-K$ if $K$ is an orthogonal projection.
If $P$ and $Q$ are orthogonal projections with $\|P-Q\|<1$, Kato in [14] verified that there exists $U \in \mathcal{U}(\mathcal{H})$ such that $P U=U Q$. Moreover, Avron, Seiler and Simon ([6]) proved that if $P$ and $Q$ are orthogonal projections on $\mathcal{H}$ with $\|P-Q\|<1$, then there exists a unitary $U \in \mathcal{U}(\mathcal{H})$ with $U P U^{*}=Q, U Q U^{*}=P$. If $P$ and $Q$ are orthogonal projections having no common eigenvectors, the main result shown by Amrein, Sinha ([2])

# https://daneshyari.com/en/article/5773335 

Download Persian Version:
https://daneshyari.com/article/5773335

## Daneshyari.com


[^0]:    th This research was partially supported by the National Natural Science Foundation of China (No. 11571211, 11471200), and the Fundamental Research Funds for the Central Universities (GK201703008).

    * Corresponding author.

    E-mail address: hkdu@snnu.edu.cn (H.-K. Du).

