Linear Algebra and its Applications 528 (2017) 25–32

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

An arithmetic–geometric mean inequality for singular values and its applications

LINEAR

lications

Limin Zou

School of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing, 404100, PR China

ARTICLE INFO

Article history: Received 21 December 2015 Accepted 9 January 2016 Available online 19 January 2016 Submitted by P. Semrl

MSC: 15A42 47A63

Keywords: Singular values Matrix means Unitarily invariant norms

ABSTRACT

In this short note, we give a new equivalent form of the arithmetic–geometric mean inequality for singular values. As applications of our result, we give a new proof of an inequality due to Bhatia and Davis (1993) [4] and we obtain a singular value inequality for matrix means, which is similar to one proved by Drury (2012) [9]. Finally, we present a log-majorization inequality for singular values.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let M_n be the space of $n \times n$ complex matrices. We shall always denote the singular values of A by $s_1(A) \geq \cdots \geq s_n(A) \geq 0$, that is, the eigenvalues of the positive semidefinite matrix $|A| = (AA^*)^{1/2}$, arranged in decreasing order and repeated according to multiplicity. If $A \in M_n$ has real eigenvalues, we label them as $\lambda_1(A) \geq \cdots \geq \lambda_n(A)$.

E-mail address: limin-zou@163.com.

Let $\|\cdot\|$ denote any unitarily invariant norm on M_n . Let $A, B \in M_n$ be positive definite, the geometric mean of A and B, denoted by A # B, is defined as

$$A \# B = A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^{1/2} A^{1/2}.$$

As pointed out in [3, p. 107] this definition could be extended to positive semidefinite matrices A, B by a limit from above:

$$A \# B = \lim_{\varepsilon \to 0} \left[\left(A + \varepsilon I \right)^{1/2} \left(\left(A + \varepsilon I \right)^{-1/2} \left(B + \varepsilon I \right) \left(A + \varepsilon I \right)^{-1/2} \right)^{1/2} \left(A + \varepsilon I \right)^{1/2} \right].$$

Let A and B be positive semidefinite. The well-known arithmetic–geometric mean inequality for singular values due to Bhatia and Kittaneh [6, Theorem 1] says that

$$s_j(AB) \le \frac{1}{2} s_j(A^2 + B^2), \ j = 1, \cdots, n,$$
 (1.1)

which can be stated in another form: If $A, B \in M_n$, then

$$s_j(A^*B) \le \frac{1}{2} s_j(AA^* + BB^*), \ j = 1, \cdots, n.$$
 (1.2)

For more information on this inequality and its equivalent forms the reader is referred to [1] and the references therein.

Let $A, X, B \in M_n$. Bhatia and Davis [4, Theorem 1] proved that

$$\|A^*XB\| \le \frac{1}{2} \|AA^*X + XBB^*\|.$$
(1.3)

This is the arithmetic-geometric mean inequality for unitarily invariant norms.

Let A and B be positive semidefinite. Recently, Drury [9, Theorem 1] proved that

$$s_j(AB) \le \frac{1}{4} s_j (A+B)^2, \ j = 1, \cdots, n,$$
 (1.4)

which is a question posed by Bhatia and Kittaneh [7, Inequality (1.7)] and it is a strengthening of inequality (1.1). For more information on singular value and norm inequalities related to matrix means the reader is referred to [2,3].

In this short note, we first present a new equivalent form of (1.2). As applications of our result, we give a new proof of inequality (1.3) and we obtain a singular value inequality for matrix means, which is similar to (1.4). Finally, we present a log-majorization inequality for singular values.

2. Main results

Now, we show a new equivalent form of the arithmetic–geometric mean inequality for singular values.

Download English Version:

https://daneshyari.com/en/article/5773343

Download Persian Version:

https://daneshyari.com/article/5773343

Daneshyari.com