Positive linear maps and perturbation bounds of matrices

R. Sharma *, R. Kumari
Department of Mathematics \mathcal{B} Statistics, Himachal Pradesh University, Shimla-5, 171005, India

A R T I C L E I N F O

Article history:

Received 6 January 2016
Accepted 25 February 2016
Available online xxxx
Submitted by R. Brualdi
Dedicated to Rajendra Bhatia

MSC:

15A45
15A60
47A12

Keywords:

Positive linear maps
Numerical range
Trace
Eigenvalues

A B S T R A C T
We show how positive unital linear maps can be used to obtain
lower bounds for the maximum distance between the eigen-
values of two normal matrices. Some related bounds for the
spread and condition number of Hermitian matrices are also
discussed here.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Recently, Bhatia and Sharma [4-6] have shown that how positive unital linear maps can be used to obtain matrix inequalities. In particular, they have obtained some old and new lower bounds for the spread of a matrix. In this paper we show that their technique

[^0]http://dx.doi.org/10.1016/j.laa.2016.02.032
0024-3795/® 2016 Elsevier Inc. All rights reserved.
can be extended and positive unital linear maps can also be used to study the spectral variations of Hermitian and normal matrices.

Let $\mathbb{M}(n)$ be the algebra of all $n \times n$ complex matrices. Let $\langle x, y\rangle$ be the standard inner product on C^{n} defined as $\langle x, y\rangle=\sum_{i=1}^{n} \overline{x_{i}} y_{i}$, and let $\|x\|=\langle x, x\rangle^{\frac{1}{2}}$. The numerical range of an element $A \in \mathbb{M}(n)$ is the set

$$
W(A)=\{\langle x, A x\rangle:\|x\|=1\} .
$$

The Toeplitz-Hausdorff Theorem [7,12] says that $W(A)$ is a convex subset of the complex plane for all $A \in \mathbb{M}(n)$. For a normal matrix A,

$$
W(A)=C o(\sigma(A))
$$

where $\operatorname{Co}(\sigma(A))$ denotes the convex hull of the spectrum $\sigma(A)$ of A. For non-normal matrices, $W(A)$ may be bigger than $C o(\sigma(A))$. The diameter of $W(A)$ is defined as

$$
\operatorname{diam} W(A)=\max _{i, j}\left\{\left|z_{i}-z_{j}\right|: z_{i}, z_{j} \in W(A)\right\}
$$

A linear map $\Phi: \mathbb{M}(n) \longrightarrow \mathbb{M}(k)$ is called positive if $\Phi(A)$ is positive semidefinite (psd) whenever A has that property, and unital if $\Phi(I)=I$. When $k=1$, such a map is called positive, unital, linear functional and is denoted by the lower case letter φ.

Bhatia and Davis [3] have proved that if Φ is any positive unital linear map and the spectrum of any Hermitian matrix A is contained in the interval $[m, M$, then

$$
\begin{equation*}
\Phi\left(A^{2}\right)-\Phi(A)^{2} \leq \frac{(M-m)^{2}}{4} I \tag{1.1}
\end{equation*}
$$

Bhatia and Sharma [4] have extended this for arbitrary matrices. One more extension of (1.1) in the special case when A is normal and φ is linear functional is given in [6]. They have augmented this technique with another use of positive unital linear maps and showed that if Φ_{1} and Φ_{2} are positive unital linear maps from $\mathbb{M}(n)$ to $\mathbb{M}(k)$, then for every Hermitian matrix $A \in \mathbb{M}(n)$ we have

$$
\begin{equation*}
\left\|\Phi_{1}(A)-\Phi_{2}(A)\right\| \leq \operatorname{diam} W(A) \tag{1.2}
\end{equation*}
$$

where $\|\cdot\|$ denotes the spectral norm. Further, if φ_{1} and φ_{2} are positive unital linear functionals on $\mathbb{M}(n)$, then for every matrix A in $\mathbb{M}(n)$

$$
\begin{equation*}
\left|\varphi_{1}(A)-\varphi_{2}(A)\right| \leq \operatorname{diam} W(A) \tag{1.3}
\end{equation*}
$$

For more details, see [5,6]. Using these inequalities they have derived various old and new bounds for the spread of matrices. In a similar spirit we discuss here perturbation bounds related to inequalities involving positive linear maps.

https://daneshyari.com/en/article/5773346

Download Persian Version:
https://daneshyari.com/article/5773346

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: rajesh.sharma.hpn@nic.in (R. Sharma).

