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A SYMMETRIZATION OF THE JORDAN CANONICAL FORM

M. RADJABALIPOUR

Abstract. For a (finite or infinite dimensional) vector space V , the notion of
a symmetric Jordan canonical form of an operator T ∈ L(V ) having a minimal
polynomial is defined and used to verify the relation between the notions of

”Jordan canonical form” and ”rational canonical form.” The paper extends
and repairs Theorem 2.2 of [M. Radjabalipour, The rational canonical form
via the splitting field; Linear Algebra and Its Applications, 439 (2013), no. 8,
2250-2255]. In particular, it is shown that there exists an auxiliary nilpotent
operator S ∈ L(W ), depending on T , such that every Jordan canonical form
of S yields a symmetric Jordan canonical form and, if the characteristic of the

ground field is zero, a rational canonical form for T . The paper concludes with

a direct proof of the symmetric Jordan canonical form which “integrates” into

a rational canonical form.

Dedicated to Rajendra Bhatia

1. Introduction

Let T be a linear operator on a finite or infinite dimensional vector space V
over a general field F. For v ∈ V , let Z(v, T ) denote the cyclic invariant subspace
of T spanned by {v, Tv, T 2v, · · · } (in the domain of T ). The generator f(x) :=
xk + ak−1x

k−1 + · · · + a1x + a0 of the principal ideal domain consisting of all
polynomials g ∈ F[x] satisfying g(T )v = 0 is called the minimal T -annihilator of v.
The space Z(v, T ) is of finite dimension k if and only if the minimal T -annihilator of
v has degree k. If v1, v2, · · · , vk ∈ V have relatively prime minimal T -annihilators
g1, g2, · · · , gk, then v = v1+v2+· · ·+vk has a minimal T -annihilator h := h1h2 · · ·hk

with hi|gi ∀i; since (h1g2g3 · · · gk)(T )v1 = 0, it follows that g1|h1 and, thus, g1 = h1.
By symmetry, gi = hi ∀i and, in view of the primary decomposition theorem, there
exist wi ∈ Z(v, T ) such that v = w1 + w2 + · · · + wk and wi has a minimal T -
annihilator (i = 1, 2, · · · , k) and

Z(v, T ) = Z(w1, T )⊕ Z(w2, T )⊕ · · · ⊕ Z(wk, T ).

Now, (g2g3 · · · gk)(T )(v1 −w1) = 0 which implies that g1|g2g3 · · · gk if v1 �= w1; the
former being impossible, we conclude that v1 = w1 and, by symmetry,

(1.1) Z(v, T ) = Z(v1, T )⊕ Z(v2, T )⊕ · · · ⊕ Z(vk, T ).

The rational canonical form of T together with the corresponding cyclic decom-
position of V assert that if V is finite dimensional [3, 4, 9] or, more generally, if T
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