A note on inequalities for positive linear maps

R. Sharma *, P. Devi, R. Kumari
Department of Mathematics \& Statistics, Himachal Pradesh University, Shimla - 171005, India

A R T I C L E I N F O

Article history:

Received 27 February 2016
Accepted 26 May 2016
Available online xxxx
Submitted by P. Semrl
Dedicated to Professor Rajendra
Bhatia on the occasion of his 65 th birthday

$M S C$:

15A45
15A42
46L53

Keywords:

Positive definite matrices
Positive unital linear maps
Tensor product
Eigenvalues

A B S T R A C T

We obtain some generalisations of the inequalities for positive unital linear maps on the algebra of matrices. As a consequence, we obtain several positive semidefinite matrices and new eigenvalue inequalities for Hermitian matrices.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb{M}(n)$ be the C^{*}-algebra of all $n \times n$ complex matrices. Let $\Phi: \mathbb{M}(n) \rightarrow \mathbb{M}(l)$ be a positive unital linear map [3]. Kadison's inequality [11] says that for any Hermitian element A of $\mathbb{M}(n)$, we have

[^0]http://dx.doi.org/10.1016/j.laa.2016.05.033
0024-3795/© 2016 Elsevier Inc. All rights reserved.
\[

$$
\begin{equation*}
\Phi\left(A^{2}\right) \geq \Phi(A)^{2} \tag{1.1}
\end{equation*}
$$

\]

or equivalently

$$
\left[\begin{array}{cc}
I & \Phi(A) \tag{1.2}\\
\Phi(A) & \Phi\left(A^{2}\right)
\end{array}\right] \geq O
$$

For more details, generalisations and extensions of this inequality, see Davis [9] and Choi [7,8].

A complementary inequality due to Bhatia and Davis [2] says that if the spectrum of a Hermitian matrix A is contained in the interval $[m, M]$, then

$$
\begin{equation*}
\Phi\left(A^{2}\right)-\Phi(A)^{2} \leq\left(\frac{M-m}{2}\right)^{2} I \tag{1.3}
\end{equation*}
$$

They also proved that

$$
\begin{equation*}
\Phi\left(A^{2}\right)-\Phi(A)^{2} \leq(\Phi(A)-m I)(M I-\Phi(A)) \tag{1.4}
\end{equation*}
$$

The inequality (1.4) provides a refinement of (1.3). For more details and applications of these inequalities, see [4-6].

The Kadison inequality (1.1) is a noncommutative version of the classical inequality

$$
\begin{equation*}
\mathbb{E}\left(X^{2}\right) \geq \mathbb{E}(X)^{2} \tag{1.5}
\end{equation*}
$$

where X is a random variable (a real-valued measurable function) on a probability space (Ω, \mathcal{F}, P) with finite expectation $\mathbb{E}(X)=\int X d P$. Kadison [11] remarks that the standard proofs of the corresponding inequalities for scalars do not apply to give simple proofs for linear maps. In case of Kadison's inequality (1.1), if $\Phi(A)$ and $\Phi\left(A^{2}\right)$ commute one can reduce the problem to the real-valued case, and the results follow from these considerations.

The inequality (1.5) is subsumed in a more general Jensen's inequality that says that if f is a convex function on (a, b) then

$$
\begin{equation*}
f(\mathbb{E}(X)) \leq \mathbb{E}(f(X)) \tag{1.6}
\end{equation*}
$$

One generalisation of the Kadison inequality (1.1) is a noncommutative analogue of (1.6) that says that if A is a Hermitian matrix whose spectrum is contained in (a, b) and if f is matrix convex function [1] on (a, b) and Φ is a positive unital linear map, then

$$
\begin{equation*}
f(\Phi(A)) \leq \Phi(f(A)) \tag{1.7}
\end{equation*}
$$

see Davis [9] and Choi [7]. Bhatia and Sharma [4] have shown that for 2×2 matrices the inequality (1.7) holds true for all ordinary convex functions on (a, b). It is well known that the same is true for every positive unital linear functional $\varphi: \mathbb{M}(n) \rightarrow \mathbb{C}$.

https://daneshyari.com/en/article/5773349

Download Persian Version:

https://daneshyari.com/article/5773349

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: rajesh.sharma.hpn@nic.in (R. Sharma).

