The sum of squared logarithms inequality in arbitrary dimensions

Lev Borisov ${ }^{\text {a }}$, Patrizio Neff ${ }^{\text {b }}$, Suvrit Sra $^{\text {c }}$, Christian Thiel ${ }^{\text {d,* }}$
${ }^{\text {a }}$ Department of Mathematics, Rutgers University, 240 Hill Center, Newark, NJ 07102, United States
${ }^{\mathrm{b}}$ Head of Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann Str. 9, 45127 Essen, Germany
${ }^{\text {c }}$ Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States
${ }^{\text {d }}$ Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann Str. 9, 45127 Essen, Germany

A R T I C L E I N F O

Article history:

Received 5 November 2015
Accepted 14 June 2016
Available online xxxx
Submitted by J. Holbrook

MSC:

26D05
26D07
30 C 15
97H20

Keywords:
Elementary symmetric polynomials
Fundamental theorem of algebra
Polynomials
Geodesics
Hencky energy
Logarithmic strain tensor
Positive definite matrices

A B S T R A C T

We prove the sum of squared logarithms inequality (SSLI) which states that for nonnegative vectors $x, y \in \mathbb{R}^{n}$ whose elementary symmetric polynomials satisfy $e_{k}(x) \leq e_{k}(y)$ (for $1 \leq k<n)$ and $e_{n}(x)=e_{n}(y)$, the inequality $\sum_{i}\left(\log x_{i}\right)^{2} \leq$ $\sum_{i}\left(\log y_{i}\right)^{2}$ holds. Our proof of this inequality follows by a suitable extension to the complex plane. In particular, we show that the function $f: M \subseteq \mathbb{C}^{n} \rightarrow \mathbb{R}$ with $f(z)=$ $\sum_{i}\left(\log z_{i}\right)^{2}$ has nonnegative partial derivatives with respect to the elementary symmetric polynomials of z. This property leads to our proof. We conclude by providing applications and wider connections of the SSLI.
© 2016 Elsevier Inc. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.laa.2016.06.026
0024-3795/® 2016 Elsevier Inc. All rights reserved.

1. Introduction

The sum of squared logarithms inequality (SSLI) arose first as a scientific issue in 2012 [22] while proving the optimality result:

$$
\begin{equation*}
\inf _{Q \in \mathrm{SO}(n)}\left\|\operatorname{sym} \log Q^{T} F\right\|^{2}=\inf _{Q \in \mathrm{SO}(n)} \inf _{\substack{Y \in \mathbb{R}^{n \times n} \\ \exp (Y)=Q^{T} F}}\|\operatorname{sym} Y\|^{2}=\left\|\log \sqrt{F^{T} F}\right\|^{2}, \tag{1}
\end{equation*}
$$

where $Y=\log X$ denotes all solutions of the matrix exponential equation $\exp (Y)=X$, $\|\cdot\|$ denotes the Frobenius matrix norm, and $\operatorname{sym} X:=\frac{1}{2}\left(X+X^{T}\right)$.

The SSLI (formally stated in Theorem 1.2) has been investigated in a series of works. In 2013, it was examined closely by Bîrsan, Neff, and Lankeit [7], who found a proof for $n \in\{2,3\}$. For $n=3$, the inequality can be written as follows: let $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}>0$ be positive real numbers such that

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & \leq y_{1}+y_{2}+y_{3}, \\
x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} & \leq y_{1} y_{2}+y_{1} y_{3}+y_{2} y_{3}, \\
x_{1} x_{2} x_{3} & =y_{1} y_{2} y_{3} .
\end{aligned}
$$

Then the sum of their squared logarithms satisfies the following inequality:

$$
\left(\log x_{1}\right)^{2}+\left(\log x_{2}\right)^{2}+\left(\log x_{3}\right)^{2} \leq\left(\log y_{1}\right)^{2}+\left(\log y_{2}\right)^{2}+\left(\log y_{3}\right)^{2}
$$

In 2015, Pompe and Neff [29] proved the SSLI for $n=4$, based on a new idea that did not extend to higher dimensions without further complications. To state the SSLI for arbitrary n, we first recall

Definition 1.1. Let $x \in \mathbb{R}^{n}$. We denote by $e_{k}(x)$ the k-th elementary symmetric polynomial, i.e. the sum of all $\binom{n}{k}$ products of exactly k components of x :

$$
e_{k}(x):=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}} \quad \text { for any } k \in\{1, \ldots, n\} .
$$

Note that $e_{1}(x)=x_{1}+x_{2}+\cdots+x_{n}$ and $e_{n}(x)=x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}$.
We also write $\mathbb{R}_{+}:=\{x \in \mathbb{R} \mid x>0\}$ and $\mathbb{R}_{-}:=\{x \in \mathbb{R} \mid x<0\}$ and set $\mathbb{R}_{+}^{n}=\left(\mathbb{R}_{+}\right)^{n}$.
Theorem 1.2 (Sum of squared logarithms inequality). Let $n \in \mathbb{N}$ and $x, y \in \mathbb{R}_{+}^{n}$ such that

$$
e_{k}(x) \leq e_{k}(y) \quad \text { for all } k \in\{1, \ldots, n-1\}
$$

https://daneshyari.com/en/article/5773350

Download Persian Version:
https://daneshyari.com/article/5773350

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: borisov@math.rutgers.edu (L. Borisov), patrizio.neff@uni-due.de (P. Neff), suvrit@mit.edu (S. Sra), christian.thiel@uni-due.de (C. Thiel).

