ARTICLE IN PRESS

LAA:13771

Linear Algebra and its Applications $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

A class of simple matrix algebras $\stackrel{\bigstar}{\Rightarrow}$

Antonio J. Calderón Martín*, Francisco J. Navarro Izquierdo

Department of Mathematics, Faculty of Sciences, University of Cádiz, Campus de Puerto Real, 11510, Puerto Real, Cádiz, Spain

ARTICLE INFO

Article history: Received 1 March 2016 Accepted 24 June 2016 Available online xxxx Submitted by R.A. Horn

Dedicated to Professor Rajendra Bhatia on the occasion of his 65th birthday

MSC: 15A30 15A12 17A60

Keywords: Matrix algebra Non-associative algebra Simple algebra

ABSTRACT

Fix an infinite set I and consider the associative matrix algebra $\mathcal{M}_I(\mathbb{F})$ where \mathbb{F} is a base field with $\operatorname{char}(\mathbb{F}) \neq 2$. For any couple of bijective maps $\sigma, \nu : I \to I$, such that $\sigma\nu = \nu\sigma$ and $\sigma^2 = \nu^2$, we introduce a linear subspace $\Omega(\sigma, \nu)$ of $\mathcal{M}_I(\mathbb{F})$. We endow it with a structure of (non-associative) algebra for a certain bilinear product, and obtain a wide class of nonassociative algebras containing, in particular, the Lie algebras $\operatorname{Lie}(\mathcal{M}_I(\mathbb{F}), t)$. We show that each algebra $\Omega(\sigma, \nu)$ is simple.

@ 2016 Elsevier Inc. All rights reserved.

E-mail addresses: ajesus.calderon@uca.es (A.J. Calderón Martín), javi.navarroiz@uca.es (F.J. Navarro Izquierdo).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2016.06.037} 0024-3795 \end{tabular} 0216$ Elsevier Inc. All rights reserved.

Please cite this article in press as: A.J. Calderón, F.J. Navarro, A class of simple matrix algebras, Linear Algebra Appl. (2016), http://dx.doi.org/10.1016/j.laa.2016.06.037

 $^{^{\}star}$ Supported by the PCI of the UCA 'Teoría de Lie y Teoría de Espacios de Banach', by the PAI with project numbers FQM298, FQM7156 and by the project of the Spanish Ministerio de Educación y Ciencia MTM2013-41208P.

^{*} Corresponding author.

ARTICLE IN PRESS

 $\mathbf{2}$

A.J. Calderón, F.J. Navarro / Linear Algebra Appl. $\bullet \bullet \bullet$ ($\bullet \bullet \bullet \bullet$) $\bullet \bullet \bullet - \bullet \bullet \bullet$

1. Introduction and previous definitions

Fix a base field \mathbb{F} with char(\mathbb{F}) $\neq 2$, an infinite set of indexes I, and the linear space of $(I \times I)$ -matrices over \mathbb{F} , denoted by $\mathcal{M}_I(\mathbb{F})$. That is, $\mathcal{M}_I(\mathbb{F})$ is the set of mappings $I \times I \to \mathbb{F}$ with just a finite number of non-zero values. For any $(i, j) \in I \times I$, we will denote by $E_{i,j}$ the elementary matrix given by $E_{i,j}(i, j) = 1$ and $E_{i,j}(p, q) = 0$ if $(p, q) \neq (i, j)$.

For any bijective map $\sigma: I \to I$ we will denote by

$$F_{\sigma}: \mathcal{M}_{I}(\mathbb{F}) \to \mathcal{M}_{I}(\mathbb{F})$$

the linear bijection determined by $F_{\sigma}(E_{i,j}) = E_{\sigma(i),\sigma(j)}$, which is an associative automorphism of $\mathcal{M}_I(\mathbb{F})$. Also, for any bijective map $\nu : I \to I$ we will denote by

$$G_{\nu}: \mathcal{M}_{I}(\mathbb{F}) \to \mathcal{M}_{I}(\mathbb{F})$$

the linear bijection defined by $G_{\nu}(E_{i,j}) = E_{\nu(j),\nu(i)}$, in which G_{ν} is an associative antiautomorphism of $\mathcal{M}_{I}(\mathbb{F})$. That is, $G_{\nu}(AB) = G_{\nu}(B)G_{\nu}(A)$ for any $A, B \in \mathcal{M}_{I}(\mathbb{F})$.

Fix now a couple of bijective maps $\sigma, \nu : I \to I$ and consider the associative automorphism F_{σ} and the associative anti-automorphism G_{ν} , constructed as above. Let us define the linear subspace of $\mathcal{M}_{I}(\mathbb{F})$ given by

$$\Omega(\sigma,\nu) := \{ M \in \mathcal{M}_I(\mathbb{F}) : F_\sigma(M) = -G_\sigma(M) \}.$$

Example 1.1. If $\sigma = \nu = Id$, then F_{σ} is the identity on $\mathcal{M}_{I}(\mathbb{F})$ while G_{ν} is the transposition map. Hence, $\Omega(Id, Id) = \text{Lie}(\mathcal{M}_{I}(\mathbb{F}), t)$.

We note that if $I = \mathbb{N}$, then we obtain a known countably dimensional simple orthogonal Lie algebra $\mathfrak{so}_{\infty}(\mathbb{F})$ which is a direct limit of finite dimensional simple orthogonal Lie algebras $\mathfrak{so}(n, \mathbb{F})$ under natural embeddings; see [2].

Example 1.2. Let us fix $I = \mathbb{C}$ the set of complex numbers, $\mathbb{F} = \mathbb{R}$ the field of real numbers, and consider the linear space $\mathcal{M}_{\mathbb{C}}(\mathbb{R})$. If we fix $\sigma, \nu : \mathbb{C} \to \mathbb{C}$ as $\sigma(z) = \overline{z}$, the conjugation map, and $\nu = Id$, we can consider the linear space

$$\Omega(\sigma, Id) = \{ M \in \mathcal{M}_{\mathbb{C}}(\mathbb{R}) : F_{\sigma}(M) = -M^t \}.$$

Suppose now that $\sigma \nu = \nu \sigma$ and $\sigma^2 = \nu^2$. Then we can introduce the bilinear product

$$\langle \cdot, \cdot \rangle : \Omega(\sigma, \nu) \times \Omega(\sigma, \nu) \to \Omega(\sigma, \nu)$$

on the linear subspace $\Omega(\sigma, \nu)$ as follows:

$$\langle A, B \rangle := F_{\sigma}(AB) - G_{\sigma}(AB)$$

Please cite this article in press as: A.J. Calderón, F.J. Navarro, A class of simple matrix algebras, Linear Algebra Appl. (2016), http://dx.doi.org/10.1016/j.laa.2016.06.037

Download English Version:

https://daneshyari.com/en/article/5773352

Download Persian Version:

https://daneshyari.com/article/5773352

Daneshyari.com