A class of simple matrix algebras *

Antonio J. Calderón Martín *, Francisco J. Navarro Izquierdo
Department of Mathematics, Faculty of Sciences, University of Cádiz, Campus de Puerto Real, 11510, Puerto Real, Cádiz, Spain

A R T I C L E I N F O

Article history:

Received 1 March 2016
Accepted 24 June 2016
Available online xxxx
Submitted by R.A. Horn
Dedicated to Professor Rajendra
Bhatia on the occasion of his 65th birthday

MSC:

15A30
15A12
17A60

Keywords:

Matrix algebra
Non-associative algebra
Simple algebra

A B S T R A C T

Fix an infinite set I and consider the associative matrix algebra $\mathcal{M}_{I}(\mathbb{F})$ where \mathbb{F} is a base field with $\operatorname{char}(\mathbb{F}) \neq 2$. For any couple of bijective maps $\sigma, \nu: I \rightarrow I$, such that $\sigma \nu=\nu \sigma$ and $\sigma^{2}=\nu^{2}$, we introduce a linear subspace $\Omega(\sigma, \nu)$ of $\mathcal{M}_{I}(\mathbb{F})$. We endow it with a structure of (non-associative) algebra for a certain bilinear product, and obtain a wide class of nonassociative algebras containing, in particular, the Lie algebras $\operatorname{Lie}\left(\mathcal{M}_{I}(\mathbb{F}), t\right)$. We show that each algebra $\Omega(\sigma, \nu)$ is simple.
© 2016 Elsevier Inc. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.laa.2016.06.037
0024-3795/® 2016 Elsevier Inc. All rights reserved.

1. Introduction and previous definitions

Fix a base field \mathbb{F} with $\operatorname{char}(\mathbb{F}) \neq 2$, an infinite set of indexes I, and the linear space of $(I \times I)$-matrices over \mathbb{F}, denoted by $\mathcal{M}_{I}(\mathbb{F})$. That is, $\mathcal{M}_{I}(\mathbb{F})$ is the set of mappings $I \times I \rightarrow \mathbb{F}$ with just a finite number of non-zero values. For any $(i, j) \in I \times I$, we will denote by $E_{i, j}$ the elementary matrix given by $E_{i, j}(i, j)=1$ and $E_{i, j}(p, q)=0$ if $(p, q) \neq(i, j)$.

For any bijective map $\sigma: I \rightarrow I$ we will denote by

$$
F_{\sigma}: \mathcal{M}_{I}(\mathbb{F}) \rightarrow \mathcal{M}_{I}(\mathbb{F})
$$

the linear bijection determined by $F_{\sigma}\left(E_{i, j}\right)=E_{\sigma(i), \sigma(j)}$, which is an associative automorphism of $\mathcal{M}_{I}(\mathbb{F})$. Also, for any bijective map $\nu: I \rightarrow I$ we will denote by

$$
G_{\nu}: \mathcal{M}_{I}(\mathbb{F}) \rightarrow \mathcal{M}_{I}(\mathbb{F})
$$

the linear bijection defined by $G_{\nu}\left(E_{i, j}\right)=E_{\nu(j), \nu(i)}$, in which G_{ν} is an associative antiautomorphism of $\mathcal{M}_{I}(\mathbb{F})$. That is, $G_{\nu}(A B)=G_{\nu}(B) G_{\nu}(A)$ for any $A, B \in \mathcal{M}_{I}(\mathbb{F})$.

Fix now a couple of bijective maps $\sigma, \nu: I \rightarrow I$ and consider the associative automorphism F_{σ} and the associative anti-automorphism G_{ν}, constructed as above. Let us define the linear subspace of $\mathcal{M}_{I}(\mathbb{F})$ given by

$$
\Omega(\sigma, \nu):=\left\{M \in \mathcal{M}_{I}(\mathbb{F}): F_{\sigma}(M)=-G_{\sigma}(M)\right\} .
$$

Example 1.1. If $\sigma=\nu=I d$, then F_{σ} is the identity on $\mathcal{M}_{I}(\mathbb{F})$ while G_{ν} is the transposition map. Hence, $\Omega(I d, I d)=\operatorname{Lie}\left(\mathcal{M}_{I}(\mathbb{F}), t\right)$.

We note that if $I=\mathbb{N}$, then we obtain a known countably dimensional simple orthogonal Lie algebra $\mathfrak{s} o_{\infty}(\mathbb{F})$ which is a direct limit of finite dimensional simple orthogonal Lie algebras $\mathfrak{s o}(n, \mathbb{F})$ under natural embeddings; see [2].

Example 1.2. Let us fix $I=\mathbb{C}$ the set of complex numbers, $\mathbb{F}=\mathbb{R}$ the field of real numbers, and consider the linear space $\mathcal{M}_{\mathbb{C}}(\mathbb{R})$. If we fix $\sigma, \nu: \mathbb{C} \rightarrow \mathbb{C}$ as $\sigma(z)=\bar{z}$, the conjugation map, and $\nu=I d$, we can consider the linear space

$$
\Omega(\sigma, I d)=\left\{M \in \mathcal{M}_{\mathbb{C}}(\mathbb{R}): F_{\sigma}(M)=-M^{t}\right\}
$$

Suppose now that $\sigma \nu=\nu \sigma$ and $\sigma^{2}=\nu^{2}$. Then we can introduce the bilinear product

$$
\langle\cdot, \cdot\rangle: \Omega(\sigma, \nu) \times \Omega(\sigma, \nu) \rightarrow \Omega(\sigma, \nu)
$$

on the linear subspace $\Omega(\sigma, \nu)$ as follows:

$$
\langle A, B\rangle:=F_{\sigma}(A B)-G_{\sigma}(A B)
$$

https://daneshyari.com/en/article/5773352

Download Persian Version:
https://daneshyari.com/article/5773352

Daneshyari.com

[^0]: ${ }^{2}$. Supported by the PCI of the UCA 'Teoría de Lie y Teoría de Espacios de Banach', by the PAI with project numbers FQM298, FQM7156 and by the project of the Spanish Ministerio de Educación y Ciencia MTM2013-41208P.

 * Corresponding author.

 E-mail addresses: ajesus.calderon@uca.es (A.J. Calderón Martín), javi.navarroiz@uca.es (F.J. Navarro Izquierdo).

