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Consider the linear response eigenvalue problem (LREP) for 
H =

[ 0 K
M 0

]
, where K and M are positive semidefinite 

and one of them is definite. Given a pair of approximate 
deflating subspaces of {K, M}, it can be shown that LREP 
can be transformed into one for H̃ that is nearly decoupled 
into two smaller LREPs upon congruence transformations on 
K and M that preserve the eigenvalues of H. In this paper, we 
establish a bound on how far the pair of approximate deflating 
subspaces is from a pair of exact ones, using the closeness of 
H̃ from being decoupled.
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Perturbation
Deflating subspaces

1. Introduction

In computational quantum chemistry and physics, the so-called random phase approx-
imation (RPA) describes the excitation states (energies) of physical systems in the study 
of collective motion of many-particle systems [1–3]. It has important applications in sil-
icon nanoparticles and nanoscale materials and analysis of interstellar clouds [1,4]. One 
important question in RPA is to compute a few eigenpairs associated with the smallest 
positive eigenvalues of the following eigenvalue problem:

H www :=
[

A B
−B −A

] [
uuu
vvv

]
= λ

[
uuu
vvv

]
, (1.1)

where A, B ∈ R
n×n are both symmetric matrices and 

[
A B
B A

]
is positive definite. 

Through a similarity transformation, this eigenvalue problem can be equivalently trans-
formed into [1,4,5]

Hzzz :=
[

0 K
M 0

] [
yyy
xxx

]
= λ

[
yyy
xxx

]
, (1.2)

where K = A −B and M = A +B. This eigenvalue problem was still referred to as the 
linear response eigenvalue problem (LREP) [1,5,6] and will be in this paper, too.

The condition imposed upon A and B in (1.1) implies that both K and M are sym-
metric and positive definite [1]. But in the rest of this paper, unless otherwise explicitly 
stated, we relax the positive definiteness of both K and M to that both are positive 
semidefinite and one of them is definite.

An important notion for LREP [1] is the so-called pair of deflating subspaces {U , V}
by which we mean that both U and V are subspaces of Rn and satisfy

KU ⊆ V and MV ⊆ U .

More discussions on this are in section 3. It is a generalization of the concept of the 
invariant subspace (or, eigenspace) in the standard eigenvalue problem upon consider-
ing the special structure in the LREP (1.2). This notion is not only vital in analyzing 
the theoretical properties such as the subspace version [1] of Thouless’s minimization 
principle [2] and the Cauchy-like interlacing inequalities [4], but also fundamental for 
several rather efficient algorithms, e.g., the Locally Optimal Block Preconditioned 4D 
Conjugate Gradient Method (LOBP4DCG) [4] and its space-extended variation [7], the 
block Chebyshev–Davidson method [8], as well as the generalized Lanczos method [9,
10,6]. Each of these algorithms generates a sequence of approximate deflating subspace 
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