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SOME INEQUALITIES FOR THE MATRIX HERON MEAN

DINH TRUNG HOA

Abstract. In this paper, we prove some norm inequalities for the matrix Heron mean

of two positive definite matrices. We also prove a determinant inequality for the t-power

mean of two positive definite matrices. As a consequence, we obtain a determinant

inequality for the matrix Heron mean.

1. Introduction

LetMn be the space of n×n complex matrices andM+
n the cone of positive semidefinite

matrices. Denote by I the identity element of Mn. For self-adjoint matrices A,B ∈ Mn

the notation A ≤ B means that B − A ∈ M+
n . For a real-valued function f of a real

variable and a self-adjoint matrix A ∈ Mn, the value f(A) is understood by means of the

functional calculus.

For 0 ≤ t ≤ 1 the t-weighted geometric mean of A and B is defined as

A�tB = A1/2(A−1/2BA−1/2)tA1/2.

The geometric mean A�B := A�1/2B is the midpoint of the unique geodesic A�tB con-

necting two points A and B in the Riemannian manifold of positive definite matrices with

trace metric ds = ||A−1/2dA A−1/2||F = (Tr(A−1dA)2)1/2 (cf. [7] or [8]).

Recently, Bhatia et al. [1] proved that for any positive definite matrices A and B and

for p = 1, 2,

||A+ B + 2rA�B||p ≤ ||A+ B + r(A1/2B1/2 + B1/2A1/2)||p. (1)

When r = 1, inequality holds for p = ∞.

For the case p = 2 the proof of (1) is based on the following fact: for any positive

definite matrices A and B,

λ(A1/2(A�B)A1/2) ≺log λ(A
3/4B1/2A3/4), (2)

where the notation λ is used for the n-tuple of eigenvalues of a matrix A in decent order

and λ(A) ≺log λ(B) means that

k∏
j=1

λi(A) ≤
k∏

j=1

λi(B), 1 ≤ k ≤ n
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