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nilpotent matrices. This result will allow us to solve Albert’s
Problem [5] for commutative power-associative C-nilalgebras
of dimension n and nilindex n — 3 in an affirmative way.
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1. Preliminaries

All the algebras considered in this paper are commutative finite-dimensional and not
necessarily associative over a field F. The powers of an element of an algebra A are not
uniquely defined. The principal powers of an element a of the algebra A are defined

k+1

inductively by a! = a and a = aa® for all k > 1. This element a is (principal)

nilpotent of index < t if a® = 0. We say that the algebra A is a (principal) nilalgebra if
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every element a of A is nilpotent. The smallest positive integer ¢ such that every element
of the algebra is nilpotent of index < t is called the (principal) nilpotent nilindex of the
algebra.

A nilpotent algebra is an algebra for which there is a natural number ¢ such that
any product containing at least ¢ elements of the algebra is zero. Thus, an algebra A is
nilpotent of index < ¢ if A* = 0, where the powers of the algebra A are defined as follows:
Al = A and AF = D itk AP A7 for all k > 2. The algebra A is solvable of index less
than or equal to t if the tth plenary power of A vanishes, A®) = 0, where the plenary
powers of A are defined inductively as follows: A = A and A% = AF-D AK=1) for
all positive integers k.

A commutative algebra A is called a power-associative algebra if for any a € A, the
subalgebra F[a] of A generated by a is associative. Commutative power-associative al-
gebras are a natural generalization of associative, alternative, and Jordan algebras. It is
well known that every finite-dimensional Jordan nilalgebra is nilpotent. In [1] A.A. Al-
bert writes the following “In the general power-associative ring case no such result is to
be expected and indeed every simple Lie algebra is a nilring. One can then hardly expect
to be able to prove that a nilring is nilpotent but a limited result of this type is prov-
able.” Gerstenhaber and Myung [16] proved that every commutative power-associative
nilalgebra of dimension < 4 and characteristic # 2 is nilpotent. In [18], D. Suttles gives
an example of a commutative power-associative nilalgebra of dimension 5 which is not
nilpotent but solvable. Thus, a modified version of Albert’s problem was formulated
in [5], Problem 1.1.

Albert’s Problem. Is every finite-dimensional (commutative) power-associative nilalgebra
solvable?

The problem is still open. In some particular cases, a positive answer for Albert’s ques-
tion was obtained. It has been proved [3,2,7,11,9] that commutative power-associative
nilalgebras of dimension < 8 and characteristic different from 2, 3 and 5 are solvable. For
nilalgebras with large nilindex with respect to their dimension we know the following
result [4,6,9].

Theorem 1. Let A be a commutative power-associative nilalgebra with dimension n and
nilindex t > n — 2, over a field of characteristic 0. Then, A is solvable.

In a series of papers, M. Gerstenhaber [12-15] established connections between nilalge-
bras and vector spaces of nilpotent linear transformations. A generalization of Theorem 1
of [13] was obtained in [6].

Theorem 2. Let A be an arbitrary commutative nilalgebra of bounded nilindex t over a
field F. If the characteristic of F is either zero or greater than 2t — 3, then L2'=3 =0 for
all a € A. If either t < 6, A is power-associative or F has at least 2t — 3 elements, then
the result is also valid when the characteristic of F is at least t.
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