Existence of a not necessarily symmetric matrix with given distinct eigenvalues and graph

Keivan Hassani Monfared ${ }^{1}$
Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada

A R T I C L E I N F O

Article history:

Received 7 April 2016
Accepted 3 April 2017
Available online 4 April 2017
Submitted by J.F. Queiro

MSC:

05C50
15A18
15A29
15B57
65F18

Keywords:

Inverse eigenvalue problem
Graph
Jacobian method
Implicit function theorem
Transversal intersection

Abstract

For given distinct numbers $\lambda_{1} \pm \mu_{1} \mathrm{i}, \lambda_{2} \pm \mu_{2} \mathrm{i}, \ldots, \lambda_{k} \pm \mu_{k} \mathrm{i} \in$ $\mathbb{C} \backslash \mathbb{R}$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{l} \in \mathbb{R}$, and a given graph G with a matching of size at least k, we will show that there is a real matrix whose eigenvalues are the given numbers and its graph is G. In particular, this implies that any real matrix with distinct eigenvalues is similar to a real, irreducible, tridiagonal matrix.

© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A directed graph $G=(V, E)$ is a pair of sets V and E where V is the set of vertices of G, and E, the set of edges of G, is a subset of $V \times V$. That is, each element of E is an ordered pair (u, v), with $u, v \in V$. We say a graph G is loopless when for each $(u, v) \in E$, we have $u \neq v$. In this paper we only consider loopless graphs. If $(u, v) \in E$ then we say u is adjacent to v and denote it by $u \rightarrow v$. Note that such a graph might have both edges (u, v) and (v, u), but since E is a set, there are no multiple edges from u to v. A directed loopless graph $G=(V, E)$ is said to have a matching of size k if E contains k vertex-disjoint edges $\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)$ and their reverses $\left(v_{1}, u_{1}\right), \ldots,\left(v_{k}, u_{k}\right)$.

A graph G is called undirected if for each $u \neq v$ the edge $(u, v) \in E$ if and only if $(v, u) \in E$. Hence we can ignore the directions of edges and consider E as a set of 2-subsets of V. That is, $E \subset\{\{u, v\} \mid u, v \in V\}$. In this case we call G an undirected graph. An undirected loopless graph $G=(V, E)$ is said to have a matching of size k if E contains k vertex-disjoint edges $\left\{u_{1}, v_{1}\right\}, \ldots,\left\{u_{k}, v_{k}\right\}$

Let $A \in \mathbb{R}^{n \times n}$. We say a (directed or undirected) loopless graph G is the graph of the matrix A when for each $i \neq j$ we have $A_{i, j} \neq 0$ if and only if $i \rightarrow j$. Note that the diagonal entries of A can be zero or nonzero.

It is of interest to study the existence of matrices with given spectral properties and graph, see [1, Chapter 4]. For the problems when the solution matrix is not necessarily symmetric see [2] for a survey on the structured inverse eigenvalue problems with an extensive bibliography, specially SIEP6b, and see [3] for the related minimum rank problems. In this paper we examine a the problem of existence of a solution matrix $A \in \mathbb{R}^{n \times n}$ where G, the graph of A, and Λ, its spectrum, are prescribed. An obvious necessary condition for the existence of a solution is that Λ to be closed under complex conjugation. Assume that Λ consists of k distinct complex conjugate pairs in $\mathbb{C} \backslash \mathbb{R}$. We will show that a sufficient condition for the existence of a solution is that

C1. G has a matching of size at least k, and
C2. all the eigenvalues are distinct.
Example 1.1 shows that condition C 1 is not necessary, and Example 1.2 shows that condition C2 is not necessary.

Example 1.1. Let G be a star on 5 vertices with 1 as the center vertex, and let

$$
A=\left[\begin{array}{rrrrr}
3 & -2 & -6 & 1 & 6 \\
5 & -2 & 0 & 0 & 0 \\
-5 & 0 & 2 & 0 & 0 \\
2 & 0 & 0 & 3 & 0 \\
-6 & 0 & 0 & 0 & 5
\end{array}\right],
$$

https://daneshyari.com/en/article/5773381

Download Persian Version:

https://daneshyari.com/article/5773381

Daneshyari.com

[^0]: E-mail address: k1monfared@gmail.com.
 ${ }^{1}$ The work of the author was partially supported by the Natural Sciences and Engineering Research Council of Canada.

