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log-log blow up solutions blow up at exactly m points

Chenjie Fan1,∗

Department of Mathematics, Massachusetts Institute of Technology,
77 Massachusetts Ave, Cambridge, MA 02139, USA

Abstract

We study the focusing mass-critical nonlinear Schrödinger equation, and construct certain solutions which
blow up at exactly m points according to the log-log law.

Résumé

Nous étudions l’équation de Schrödinger non linéaire focalisante de masse critique, et construisons certaines
solutions avec exactement m points d’explosion d’après la loi de log-log.
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1. Introduction

We consider the Cauchy Problem for the mass-critical focusing nonlinear Schrödinger equation (NLS) on
Rd for d = 1, 2 :

(NLS)

{
iut = −Δu− |u| 4du,
u(0) = u0 ∈ H1(Rd).

(1.1)

Problem (1.1) has three conservation laws :
— Mass :

M(u(t, x)) :=

∫
|u(t, x)|2dx = M(u0), (1.2)

— Energy :

E(u(t, x)) :=
1

2

∫
|�u(t, x)|2dx− 1

2 + 4
d

∫
|u(t, x)|2+ 4

d dx = E(u0), (1.3)

— Momentum :

P (u(t, x)) := �(
∫

�u(t, x)u(t, x))dx = P (u0), (1.4)

and the following symmetry :

1. Space-time translation : If u(t, x) solves (1.1), then ∀t0 ∈ R, x0 ∈ Rd, we have u(t− t0, x− x0) solves
(1.1).
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