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Abstract

In this paper we study the dynamical billiards on a convex 2D sphere. We investigate some generic properties of the convex 
billiards on a general convex sphere. We prove that C∞ generically, every periodic point is either hyperbolic or elliptic with 
irrational rotation number. Moreover, every hyperbolic periodic point admits some transverse homoclinic intersections. A new 
ingredient in our approach is Herman’s result on Diophantine invariant curves that we use to prove the nonlinear stability of elliptic 
periodic points for a dense subset of convex billiards.
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The dynamical billiards, as a class of dynamical systems, were introduced by Birkhoff [5,6] in his study of La-
grangian systems with two degrees of freedom. A Lagrangian system with two degrees of freedom is isomorphic with 
the motion of a mass particle moving on a surface rotating uniformly about a fixed axis and carrying a fixed conserva-
tive field of force with it. If the surface is not rotating and the force vanishes, then the particle moves along geodesics 
on the surface. If the surface has boundary, then the resulting system is a billiard system.

The classical results of dynamical billiards are closely related to geometrical optics, which has a much longer 
history. For example, the discovery of the integrability of elliptic billiards, according to Sarnak [49], goes back at least 
to Boscovich in 1757. Surprisingly, the billiard dynamics is also related to the spectra property of Laplace–Beltrami 
operator on manifolds with a boundary. More precisely, Weyl’s law in spectral theory gives the first order asymptotic 
distribution of eigenvalues of the Laplace–Beltrami operator on a bounded domain. Weyl’s conjecture on the second 
order asymptotic distribution was proved by Ivrii [29] for any compact manifold with boundary, under the assumption 
that the measure of periodic points of billiard dynamics on that manifold is zero.
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Current study of dynamical billiard systems mainly focuses on the Euclidean case. Birkhoff studied the dynamical 
billiards inside a convex domain on the plane. Birkhoff also conjectured that ellipses are the only integrable billiards. 
A weak version of this conjecture was proved by Bialy [3]. The dynamical billiards on a bounded domain with 
convex scatterers were introduced by Sinai in his study of Boltzmann Ergodic Hypothesis [50] on ideal gases. Sinai 
discovered the dispersing mechanism and proved that dispersing billiards are hyperbolic and ergodic. Since then, 
the mathematical and physical study of chaotic billiards has developed at a remarkable speed (see [14]), particularly 
after the various defocusing mechanisms discovered by Bunimovich [9,10], Wojtkowski [55], Markarian [33] and 
Donnay [21]. Very recently, the dynamics of some asymmetric lemon billiards are proved to be hyperbolic [12], for 
which the separation condition in the defocusing mechanism was strongly violated. See [53,30,28] for the study of 
chaotic billiards on general surfaces. The study of chaotic billiards also provides the key idea for the construction of 
hyperbolic geodesic flows on S2, see [19,20,13].

Dynamical billiards on curved surfaces are related to the study of quantum magnetic confinement of non-planar 2D 
electron gases (2DEG) in semiconductors [25], where the effect of varying the curvature of the surface corresponds 
to a change in the potential energy of the system. The dynamical billiards can be viewed as a mathematical model 
for this system, and may be used to investigate the electron transport properties of the semiconductors. As mentioned 
in [28], the advances in semiconductor fabrication techniques allow to manufacture solid state (mesoscopic) devices 
where electrons are confined to curved surfaces.

In this paper we consider the convex billiards on convex spheres. Recall that the 2D sphere S2 with a smooth 
Riemannian metric g is said to be (strictly) convex, if it has positive Gaussian curvature: Kg(x) > 0 for all x ∈ S2. 
Given a tangent vector v ∈ TxS

2, the geodesic passing through x in the direction of v is defined by the exponential 
map γv : R → S2, t �→ expx(tv). For any two points p, q ∈ S2, let d(p, q) be the length of the shortest geodesics 
connecting p and q . Let Inj(S2, g) be the injective radius of (S2, g).

Example. Let S2 be the unit sphere in R3 endowed with the round metric g0. Then K0 ≡ 1, and every geodesic 
on S2 moves along a great circle. Let p, q ∈ S2 be two points on the sphere, and α be the angle between the two 
position vectors p, q. Then the geodesic distance d0(p, q) between p and q is given by d0(p, q) = α(p, q), and 
cosα = 〈p, q〉. Therefore, d0(p, q) = arccos〈p, q〉. Moreover, Inj(S2, g0) = π . The dynamical billiards inside convex 
subsets of (S2, g0) have been studied recently in [8,4,16]. Regarding the Ivrii conjecture, it is proved in [7] that the 
set of periodic points of period 3 has zero measure for any billiard on the unit sphere.

Definition 1.1. Let (S2, g) be a convex sphere. A closed subset Q ⊂ S2 is said to be (geodesically) convex, if Q is 
simply connected, and for any two points x, y ∈ Q, there is a unique minimizing geodesic contained in Q connecting 
x and y. A convex domain Q is said to be strictly convex, if the interior of each minimizing geodesic is contained in 
the interior Qo of Q.

Let Q ⊂ S2 be a convex domain, s be the arc-length parameter of � = ∂Q, and κ(s) be the geodesic curvature of 
� at �(s). Note that κ(s) ≥ 0 for all s. If Q is strictly convex, then κ(s) > 0 for all s (except on a closed set without 
interior). By definition, there are no conjugate points inside a convex domain Q. In the following we require that there 
are no conjugate points on the closed domain Q. A sufficient condition for nonexistence of conjugate point is that 
diam(Q) < Inj(S2, g).

The dynamical billiard on Q can be defined analogously to the planar case. That is, a particle moves along geodesics 
inside Q, and reflects elastically upon hitting the boundary ∂Q. Suppose the previous reflection happens at �(s). Let 
θ be the angle measured from the (positive) tangent direction �̇(s) to the post-reflection velocity of that particle. Then 
the billiard map F sends (s, θ) to the next reflection (s1, θ1) with ∂Q. The phase space of the billiard map F on Q
is given by M = � × (0, π). Note that the 2-form ω = sin θ ds ∧ dθ is a symplectic form on M . Let μ be the smooth 
probability measure on M with density dμ = 1

2|∂Q| sin θ ds dθ .

Theorem 1. Let (S2, g) be a convex sphere and Q ⊂ S2 be a strictly convex domain with Cr smooth boundary 
� = ∂Q. Then billiard map F : M → M is a symplectic twist map. In particular, F preserves the measure μ.
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