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A KELLER-SEGEL TYPE SYSTEM IN HIGHER

DIMENSIONS

SÜLEYMAN ULUSOY

Abstract. We analyze an equation that is gradient flow of a functional
related to Hardy-Littlewood-Sobolev inequality in whole Euclidean space
R

d, d ≥ 3. Under the hypothesis of integrable initial data with finite sec-
ond moment and energy, we show local-in-time existence for any mass of
“free-energy solutions”, namely weak solutions with some free energy es-
timates. We exhibit that the qualitative behavior of solutions is decided
by a critical value. Actually, there is a critical value of a parameter in
the equation below which there is a global-in-time energy solution and
above which there exists blowing-up energy solutions.

1. Introduction

There has been recent interest in introducing a higher-dimensional analog
of Patlak-Keller-Segel(PKS) system; see [3, 10, 19, 22, 23] and the references
therein. The original model is a simplified version of the model that describes
the collective motion of cells that are attracted by a self-emitted chemical
substance. There are many proposed mathematical models for chemotaxis.
As far as we know, the first mathematical model was introduced by Patlak
in [21] and later by Keller and Segel in [15]. Further simplification has been
proposed later, in which case the equations take the following form which
we call the PKS system:

(1.1)

⎧⎨
⎩

∂f
∂t (t, x) = Δf(t, x)− χ∇ · (f(t, x)∇c(t, x)), t > 0, x ∈ R

2,
−Δc(t, x) = f(t, x), t > 0, x ∈ R

2,
f(0, x) = f0(x) ≥ 0.

Here, (t, x) �→ f(t, x) is the cell density, and (t, x) �→ c(t, x) is the concentra-
tion of chemoattractant. The first equation in (1.1) takes into account that
the motion of cells is driven by the steepest increase in the concentration of
chemoattractant while following a Brownian motion due to external inter-
actions. The second equation in (1.1) takes into account that the cells are
producing the chemoattractant themselves and while this is diffusing into
the environment.

χ > 0 is the sensitivity of the bacteria to the chemoattractant, assumed
to be a constant; which measures the nonlinearity of the system.

The existence of solutions, critical mass phenomena, blow-up of solutions,
qualitative behavior of solutions for equation (1.1) and similar equations
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