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Abstract

In this article we study the optimal regularity for solutions to the following weakly coupled system with interconnected obstacles{
min(−�u1 + f 1, u1 − u2 + ψ1) = 0

min(−�u2 + f 2, u2 − u1 + ψ2) = 0,

arising in the optimal switching problem with two modes.
We derive the optimal C1,1-regularity for the minimal solution under the assumption that the zero loop set L := {ψ1 +ψ2 = 0}

is the closure of its interior. This result is optimal and we provide a counterexample showing that the C1,1-regularity does not hold 
without the assumption L = L 0.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider the following system of weakly coupled equations of obstacle type{
min(−�u1 + f 1, u1 − u2 + ψ1) = 0

min(−�u2 + f 2, u2 − u1 + ψ2) = 0,
(1)

with given Dirichlet boundary conditions ui = gi on ∂�. These type of systems arise in optimal switching problems 
with two switching modes. Here f 1 and f 2 are the running cost functions corresponding to the switching modes. The 
functions ψ1 and ψ2 are the costs of switching from one mode to the other. More details on the optimal switching 
problem are provided in Section 2.1.

The uniqueness and C1,1-regularity of the solutions to such systems have been studied in the literature under the 
assumption that the switching costs are nonnegative constants, [4,7,2]. Obstacle type weakly coupled systems with 
first order Hamiltonians and nonconstant switching costs have been studied in [3,6]. In the paper [3], Section 5 the 
authors investigate the speed of convergence of the solutions to a penalized system, they also show that the solution 
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of the first order Hamilton–Jacobi obstacle type system is Lipschitz continuous, under the assumption that each of the 
switching costs is bounded from below by a positive constant.

In our paper we make only the nonnegative loop assumption. This is a necessary condition for the system to be 
well-defined. Indeed, let (u1, u2) be a solution to (1), then u1 − u2 + ψ1 ≥ 0 and u2 − u1 + ψ2 ≥ 0, which implies

ψ1(x) + ψ2(x) ≥ 0. (2)

In the optimal switching setting, the condition (2) prevents the agent from making arbitrary gains by looping, in 
the sense that ψ1(x) + ψ2(x) is the cost of switching from one mode to the other and immediately switching back. 
We denote the set where it is possible to switch for free by

L = {x ∈ � | ψ1(x) + ψ2(x) = 0},
and call it free switching or zero loop set.

By using the penalization/regularization method we derive the existence of solutions, showing that through a sub-
sequence the solutions of the penalized system converge to the minimal solution (u1

0, u
2
0) to (1). Then we see that the 

solution ui
0 ∈ C1,γ , for every 0 < γ < 1 and

‖�ui
0‖L∞(�) ≤ max

i
‖�ψi‖L∞(�) + 3 max

i
‖f i‖L∞(�). (3)

The aim of the paper is to investigate if the solutions are C1,1, which is the best regularity that we can hope that 
the solutions achieve. The structure of our system shows that at some subdomains of �, the regularity of the solutions 
can be derived by already known C1,1-regularity results for the obstacle problem. In our discussion we see that the 
main point is to describe the regularity at so called meeting points lying on ∂L , the boundary of the zero loop set.

In the main theorem, Theorem 4, we show that at the meeting points x0 ∈ ∂L 0 ∩ � the solutions are C2,α , under 
the assumption that f i ∈ Cα and ψi ∈ C2,α . By L 0 we denote the interior of the set L , and by pointwise C2,α

regularity we mean uniform approximation with a second order polynomial with the speed r2+α.
The idea of the proof is the same as in deriving the optimal regularity for the no-sign obstacle problem in [1]. The 

proof is based on the BMO-estimates for D2u1
0 and D2u2

0 following from the estimate (3). At the point x0, we consider 
r2+α-th order rescalings of ui

0 denoted by vi
r , and show that these are uniformly bounded in W 2,2(B1). Then, looking 

at the corresponding system for (v1
r , v

2
r ), we conclude that the rescalings are uniformly bounded in the ball B1.

In the end we justify our assumption 0 ∈ ∂L 0 with a counterexample: We consider a particular system in R2, 
where the zero loop set L = {0}, then we find an explicit solution, that is not C1,1.

The paper is structured as follows: In Section 2 we provide some background material. In Section 3 we use the 
penalization method to derive the existence of strong solutions, and observe that these are actually minimal solutions. 
The main results are presented in the last section, where we prove that the minimal solution is locally C1,1 if the zero 
loop set is the closure of its interior, and provide a counterexample to C1,1-regularity when ψ1 + ψ2 has an isolated 
zero.

2. Background material

In this section we state some known results, which we use in our discussion, without giving any proofs.

2.1. Optimal switching problem

Let � ⊂ R
n be a bounded domain with a smooth boundary. We consider an agent that can be anywhere in � and 

in one of a finite number m of states. For every 1 ≤ i ≤ m, the agent moves in � according to a diffusion

dx = bi(x)dt + σi(x)dWt ,

where Wt is a Brownian motion in a suitable probability space, bi : � → R
n and σi : � →R

n×m are smooth functions. 
The generator of the diffusions is denoted by Liv = 1

2σiσ
T
i : D2v + bi · Dv.

The agent can switch from any diffusion mode to another. At every instant t the agent pays a running cost f i(t)(x), 
depending on the present state i(t) and position x. Additionally, when changing state i to state j he incurs in a switch-
ing cost −ψij (x). Finally, when the diffusion reaches the boundary and the agent is in state i, the process is stopped 
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