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Abstract

In this paper, we address the problem of determining the asymptotic behaviour of the solutions of the incompressible stationary 
Navier–Stokes system in the full space, with a forcing term whose asymptotic behaviour at infinity is homogeneous of degree −3. 
We identify the asymptotic behaviour at infinity of the solution. We prove that it is homogeneous and that the leading term in the 
expansion at infinity uniquely solves the homogeneous Navier–Stokes equations with a forcing term which involves an additional 
Dirac mass. This also applies to the case of an exterior domain.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider the incompressible stationary Navier–Stokes equations with a forcing term in R3:

−�U + (U · ∇)U + ∇p = f, divU = 0 in R
3, lim|x|→∞U(x) = 0. (1.1)

The forcing f is given and the unknowns are the velocity field U and the scalar pressure p. Clearly p is uniquely (up 
to a constant) determined by f and U . For this reason, by solution we mean only the velocity field U . In other words, 
throughout this paper a solution of (1.1) is a vector field U such that there exists some p such that (1.1) is satisfied.

The aim of this paper is to determine the asymptotic behaviour of the solutions at infinity under reasonable as-
sumptions on the forcing f . Several authors investigated this problem.

In [1] the authors studied the existence and uniqueness of solutions under a smallness assumption in the critical 
space L3,∞. Moreover, that article found an explicit asymptotic behaviour of the solutions with a decay as O( 1

|x|2 )
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provided that P�−1f is bounded by C/(1 + |x|2), where P is the Leray projector. More precisely they showed the 
following expansion for the solution:

U(x) = P�−1f (x) + m(x) :
∫
R3

U ⊗ U + O

(
ln |x|
|x|3

)
as |x| → ∞ (1.2)

where m(x) is an explicit function homogeneous of degree −2 and smooth outside 0. Observe that P�−1 is a con-
volution operator whose kernel is a homogeneous function of degree −1. Therefore, if f is sufficiently decaying at 
infinity, the condition that |P�−1f | � C/(1 + |x|2) imposed in [1] holds true if and only if 

∫
R3 f = 0.

But since all terms in the expansion (1.2) are O( 1
|x|2 ), it excludes all solutions which are homogeneous of de-

gree −1. In particular it excludes the very important case of Landau solutions. The Landau solutions were introduced 
by Landau in [10] and they are given by the explicit formula

vc
1(x) = 2

c|x|2 − 2x1|x| + cx2
1

|x|(c|x| − x1)2
, vc

2(x) = 2
x2(cx1 − |x|)
|x|(c|x| − x1)2

, vc
3(x) = 2

x3(cx1 − |x|)
|x|(c|x| − x1)2

with pressure

p(x) = 4
cx1 − |x|

|x|(c|x| − x1)2
.

They verify (1.1) with forcing f = βδ where

β = 8πc

3(c2 − 1)

(
2 + 6c2 − 3c(c2 − 1) log

(
c + 1

c − 1

))

and δ is the Dirac mass in 0 (see [4]). It was even shown by Šverák [12] that all homogeneous solutions of (1.1) on 
R

3 \ {0} with vanishing forcing are the Landau solutions.
It appears then that the relevant asymptotic behaviour at infinity of the solutions of (1.1) with forcing sufficiently 

decaying at infinity should rather be of order O(1/|x|). And indeed, it was shown in [11] that small solutions of the 
stationary incompressible Navier–Stokes equations in an exterior domain of R3 behave like v(x) + o(1/|x|) where 
v is some unknown vector field homogeneous of degree −1. Moreover, Korolev and Šverák [9] observed that the 
asymptotic profile v must be a Landau solution. More precisely, they proved that if U is small and verifies (1.1) with 
f = 0 in the exterior of a ball with no boundary conditions required, then there exists a such that U = va + o(1/|x|)
as |x| → ∞.

Let us also mention the work [5] where the authors study the stationary Navier–Stokes flow around a rotating 
body. They obtain again that the asymptotic behaviour of the solution is given by a Landau solution when the speed 
of rotation of the body is sufficiently small. In [8], the authors prove that the asymptotic behaviour as |x| → ∞ of 
time-periodic solutions is also given by a Landau solution.

Since the relevant asymptotic behaviour at infinity is homogeneous of degree −1 and since the forcing correspond-
ing to a velocity homogeneous of degree −1 is homogeneous of degree −3, it makes sense to study the asymptotic 
behaviour of the solutions of (1.1) with a forcing whose asymptotic behaviour at infinity is homogeneous of degree −3.

Let α ∈ (0, 1) be fixed once and for all. We will assume in the rest of this paper that the forcing term is of the form

f = φf0 + f1 (1.3)

where

• f0 is homogeneous of degree −3, locally bounded on R3 \ {0};
• we have that |f1(x)| � C/(1 + |x|)3+α for some constant C;
• φ ∈ C∞(R3; [0, 1]) is a radial cut-off function such that φ(x) = 0 for |x| � 1/2 and φ(x) = 1 for |x| � 1.

The questions that we ask ourselves are the following. Under what additional hypothesis on f0 and f1 there exists 
a solution U of (1.1) such that |U(x)| � C/|x| for some constant C? When such a solution exists, how does it behave 
at infinity? In short, we give the following answers. If such a U exists then necessarily
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