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Abstract

In [8], the first author proposed a strengthening of Onsager’s conjecture on the failure of energy conservation for incompressible 
Euler flows with Hölder regularity not exceeding 1/3. This stronger form of the conjecture implies that anomalous dissipation will 
fail for a generic Euler flow with regularity below the Onsager critical space L∞

t B
1/3
3,∞ due to low regularity of the energy profile.

The present paper is the second in a series of two papers whose results may be viewed as first steps towards establishing the 
conjectured failure of energy regularity for generic solutions with Hölder exponent less than 1/5. The main result of this paper 
shows that any non-negative function with compact support and Hölder regularity 1/2 can be prescribed as the energy profile of an 
Euler flow in the class C1/5−ε

t,x . The exponent 1/2 is sharp in view of a regularity result of Isett [8]. The proof employs an improved 
greedy algorithm scheme that builds upon that in Buckmaster–De Lellis–Székelyhidi [1].
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The present work concerns the construction of Hölder continuous solutions to the incompressible Euler equations 
on R ×R

3 and on R ×T
3

∂tv
l + ∂j (v

j vl) + ∂lp = 0

∂j v
j = 0

(E)

with a prescribed, possibly rough energy profile. As we consider solutions with fractional regularity, what we mean by 
a solution to (E) is a continuous velocity field v :R ×T

3 → R
3 and pressure p : R ×T

3 →R that together satisfy (E)
in the sense of distributions.
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The main result of the paper is the following Theorem:

Theorem 1.1 (Euler flows with prescribed energy profile). Let α < 1/5, let I ⊆ R be a bounded open interval, and 
let ē(t) ≥ 0 be any non-negative function with compact support in I which belongs to the class ē(t) ∈ C

γ
t for some 

γ > 2α
1−α

. Then:

1. There exists a weak solution (v, p) to the incompressible Euler equations in the class v ∈ Cα
t,x(R × T

3) with 
support contained in

suppv ∪ suppp ⊆ I ×T
3

such that the energy profile of v is equal to 
∫
T3 |v|2(t, x)dx = ē(t) for all t ∈ R.

2. Moreover, one may choose a one parameter family of solutions (vA, pA), 0 ≤ A ≤ 1, with the above properties 
such that the energy profile of vA is equal to 

∫
T3 |vA|2(t, x)dx = Aē(t) and such that ‖vA‖Cα

t,x
→ 0 as A → 0.

The assumption that e(t) is at least 2α/(1 − α)-Hölder is sharp in view of a regularity result in [8], which states 
that the energy profile of an Euler flow in the class v ∈ L∞

t Cα
x , 0 < α ≤ 1/3, belongs to the class e(t) ∈ C

2α/(1−α)
t . 

We remark that our arguments also allow one to achieve an energy profile that does not have compact support provided 
the norm ‖e‖C

γ
t

= supt |e(t)| + supt sup|�t |�=0
|e(t+�t)−e(t)|

|�t |γ is finite. Furthermore, the proof of Theorem 1.1 extends 
easily to the nonperiodic setting (cf. Theorem 3.2 below).

Theorem 1.1 on solutions with prescribed rough energy profiles builds upon works [5,4,1], which exhibit solutions 
whose energy profiles can be any given smooth, strictly positive function on a closed interval [0, T ]. These results 
show in particular that for any α < 1/5 it is possible to construct solutions with Cα

t,x regularity whose energy profiles 
are strictly increasing or strictly decreasing (which we expect to be nongeneric solutions, as in Conjecture 1 of [6]). 
Theorem 1.1 improves on these results by obtaining sharp regularity for the energy profile, and by removing the 
restriction of having a strictly positive lower bound on the desired energy profile.

To achieve these improvements, we develop a more delicate greedy algorithm for choosing the energy increments 
at each stage of the iteration, and develop a sharper form of the Main Lemma in the iteration that allows us to execute 
this algorithm. A quadratic commutator estimate akin to the one used in the proof of energy conservation in [3,2] (as 
well as the proof of the 2α/(1 − α)-Hölder estimate for the energy profile in [8]) plays a key role in the proof. Our 
proof is also greatly simplified by the fact that we are able to achieve an exponential (rather than double-exponential) 
growth of frequencies in the iteration. This simplification is available thanks to improvements used to localize the 
construction in [6].

Our motivation for pursuing Theorem 1.1 extends from a strengthening of Onsager’s conjecture proposed in [8], 
which states that a generic Euler flow in the class CtC

α
x , 0 < α ≤ 1/3 will have an energy profile of the minimal 

regularity allowed by the equation. We refer to [6] for a thorough discussion.

2. The Main Lemma

In this section, we present the Main Lemma that is responsible for the proof of Theorem 1.1. The purpose of this 
lemma is to describe precisely the result of one step of the convex integration procedure. Theorem 1.1 follows from 
iteration of this Lemma as we will explain in Section 3.

We start by recalling the Euler–Reynolds system introduced in [5]. A vector field vl , scalar field p and symmetric 
tensor field Rjl are said to be an Euler–Reynolds flow if (v, p, R) together satisfy the following PDE in the sense of 
distributions.

∂tv
l + ∂j (v

j vl) + ∂lp = ∂jR
jl

∂j v
j = 0

(1)

We will consider Euler–Reynolds flows on the domain R × M where M may be either a torus M = T
3 or 

M =R
3.

The Main Lemma of the iteration summarizes how, given an initial Euler–Reynolds flow (v, p, R) satisfying certain 
estimates, it is possible to perturb the velocity field and pressure to obtain a new Euler–Reynolds flow (v1, p1, R1)
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