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We propose a framework for the visualization of directed networks relying on the 
eigenfunctions of the magnetic Laplacian, called here Magnetic Eigenmaps. The 
magnetic Laplacian is a complex deformation of the well-known combinatorial 
Laplacian. Features such as density of links and directionality patterns are revealed 
by plotting the phases of the first magnetic eigenvectors. An interpretation of 
the magnetic eigenvectors is given in connection with the angular synchronization 
problem. Illustrations of our method are given for both artificial and real networks.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in neuroscience, biology, social or computer science are phrased in terms of networks and 
graphs. The embedding of data points forming undirected graphs can be performed using manifold learning 
methods, among which are the so-called Laplacian Eigenmaps [1] and Diffusion Maps [2]. In the same spirit, 
the embedding of a directed graph originating from the sampling of a vector field on a manifold was studied 
in [3]. A Laplacian for strongly connected and aperiodic directed networks was introduced by Chung [4] in 
relation with a random walk process, which was used for visualization e.g. in [5]. Actually, Laplacians are 
very useful tools for community detection and data visualization. A common feature of these approaches is 
the relevance of the discrete or combinatorial Laplacian, and its normalized versions. In the same context 
of directed graphs, an interesting approach for representing functions in terms of an orthogonal system was 
put forward very recently under general assumptions [6].

In this letter, no assumption on the origin of directed networks is needed, so we could deal, for example, 
with networks of webpages which are not embedded in any vector space. In particular, we propose here the 
use of another Laplacian which naturally exists for a general connected directed network, called the magnetic 
Laplacian. This operator is actually a vector bundle Laplacian as described in [7,8] and a Connection 
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Laplacian [9]. Interestingly, the magnetic Laplacian can be interpreted as a discrete quantum mechanical 
Hamiltonian of a charged particle on a network, influenced by a magnetic flux [10–12]. The method that we 
describe assigns a complex rotation, i.e., an element of U(1), to each directed link, and the orientation of 
the link determines the direction of the rotation [13].

This letter is organized as follows. In Section 2 the magnetic Laplacian and its eigenvectors are introduced. 
A method using the complex phase of these eigenvectors for visualizing directed graphs is proposed in 
Section 3. Some examples are shown in Section 4, and the letter ends with some conclusions in Section 5.

2. Magnetic Laplacian and Eigenmaps

Consider a connected graph G = (V, E) with a set of N nodes V and a set of undirected edges E. In the 
case of an undirected graph, a symmetric weight matrix W (s) is given with elements [W (s)]ij = w

(s)
ij ≥ 0 for all 

i and j ∈ V . The Laplacian Eigenmaps are the eigenvectors of the combinatorial Laplacian L(0) = D−W (s), 
where D is the diagonal degree matrix with matrix elements [D]ii = di =

∑
j∈V w

(s)
ij for all i ∈ V . The 

volume of a subgraph SA of G with node set A is simply vol(SA) =
∑

i∈A di. In the case of directed networks, 
the graph is given by an asymmetric weight matrix W with elements [W ]ij = wij ≥ 0. For simplicity, the 
weights are chosen to be binary, i.e., wij = 1 if there is a link from i to j and wij = 0 otherwise. The weight 
matrix W can be decomposed into a symmetric term w(s)

ij = (wij + wji) /2, indicating that {i, j} ∈ E, and 
a skew-symmetric term, the edge flow aij = −aji encoding the direction of the link. For all {i, j} ∈ E, we 
have aij = 1 if the link points from i to j, and aij = 0 if {i, j} is not directed.

In this letter, the magnetic Laplacian is defined as the self-adjoint, positive semi-definite operator L(g) =
D−T (g)�W (s), where D is the degree matrix associated with the symmetrized weight matrix, 0 ≤ g < 1/2 is 
an electric charge parameter, and [T (g)�W (s)]ij = exp (i2πgaji)w(s)

ij (notice the Hadamard product �). The 

solutions of the generalized eigenvalue problem L(g)φ = λDφ are the Magnetic Eigenmaps φ
(g)
k associated 

with the eigenvalues λ(g)
k ≥ 0 for k ∈ {0, . . . , N − 1} [14] (we assume λ(g)

0 ≤ λ
(g)
1 ≤ · · · ≤ λ

(g)
N−1).

2.1. Interpretation of the first eigenvectors

While the calculation of the second eigenvector of the normalized combinatorial Laplacian is a relaxation 
of the (normalized) cut problem, the calculation of the first eigenvector of the normalized magnetic Laplacian 
is a relaxation of the angular synchronization problem [15]. Given a subgraph S of G (in general, one can 
choose S = G), the angular synchronization problem consists in finding the angles θ� = (θ�1 , . . . , θ�N )ᵀ ∈
U(1)N given by θ� ∈ arg minθ ηS(θ) where the frustration [16] is defined by

ηS(θ) = 1
2

∑
i,j∈S w

(s)
ij |eiθi − eiθijeiθj |2∑

i∈V di
,

with θij = 2πgaji for all i, j ∈ S such that w(s)
ij �= 0. Notice that 

∑
i∈V di = vol(G). The lowest eigenvector 

of the normalized magnetic Laplacian φ(g)
0 is the solution of the spectral problem relaxing minθ ηG(θ). Our 

first conclusion is that computing the complex phase of φ(g)
0 yields an approximation of θ� that we propose 

to choose as the first visualization coordinate. In [13], the solution of the angular synchronization problem is 
shown to provide a ranking of the nodes in directed graphs, although a slightly different eigenvector problem 
is considered.

The performance of the spectral relaxation of the cut problem can be studied using a classical result of 
spectral graph theory, the Cheeger inequality, which relates the Cheeger constant to the second smallest 
eigenvalue of the combinatorial Laplacian, providing the worst case performance for the spectral clustering 
method. Analogous results relate the first smallest eigenvalue of the Connection Laplacian [16] and the 



Download	English	Version:

https://daneshyari.com/en/article/5773530

Download	Persian	Version:

https://daneshyari.com/article/5773530

Daneshyari.com

https://daneshyari.com/en/article/5773530
https://daneshyari.com/article/5773530
https://daneshyari.com/

